Towards an IP-oriented Testing Framework
the IPv6 Testing Toolkit

Ariel Sabiguero!2, Anthony Baire?, Alexandra Desmoulin?, Annie Floch?,
Frédéric Roudaut?, and César Viho?

! Instituto de Computacién, Facultad de Ingenierfa, Universidad de la Repiiblica
J. Herrera y Reissig 565, Montevideo, Uruguay
asabigue@fing.edu.uy
http://www.fing.edu.uy/inco

2 IRISA
Campus de Beaulieu
35042 Rennes CEDEX, France
{asabigue ,abaire,adesmoul,afloch,roudaut, viho}@irisa A,
http://www.irisa.fr/armor

Abstract. TTCN-3 is an abstract language for specification of Abstract
Test Suites. Coding of TTCN-3 values into physically transmittable mes-
sages and decoding of bitstrings into their TTCN-3 representation has
been removed from the language itself and relayed to external and spe-
cialized components, called CoDec. CoDec development is a must for
IPv6 protocol testing as standard ones do not cope with the require-
ments. To achieve adequate software engineering practices, a set of types,
tools and definitions were developed. This paper unveils gray areas in
TTCN-3 architecture and presents a methodological approach to min-
imize the complexity of CoDec development. Even though the initial
field of application is IPv6 testing, the main tool introduced -the CoDec
Generator- is a valuable tool in any testing application domain. This
CoDec Generator is developed within the framework called IPv6 Testing
Toolkit.

Keywords: IPv6 Testing, TTCN-3, automatic CoDec generation

1 Introduction

The Testing and Test Control Notation version 3 (TTCN-3) is a standard test
specification and implementation language [1-6]. It is designed to provide a
framework for the precise definition of test procedures for black-box testing of
responsive communicating systems [7,8]. TTCN-3 has been defined to be ab-
stract enough so as to be used for any kind of testing activity, from Abstract
Test Suite specification to Executable Test Suite execution. It is supposed to
allow an easy, efficient and yet powerful description of abstract test suites in a
platform independent manner. Even though it cannot be considered a new lan-
guage, there is not enough maturity and know-how in the community regarding
its application.

TTCN-3 is a strong-typed language which presents some difficulties when
trying to work with complex, low level oriented data. Network protocols hold
themselves several hard to predict behaviors related to flow flags, options and
other aspects that require the ability to handle unknown sizes, number of options,
etc. TTCN-3 language provides basic matching capability based on wildcards like
? and *.

Coding of TTCN-3 values into transmittable messages and decoding of bit-
strings into their TTCN-3 representation has been removed from the core lan-
guage itself and is done in an external component. These operations of cod-
ing and decoding are relayed to a specialized component named CoDec. The
CoDec is interfaced with the TTCN-3 Executable (TE) through the Test Con-
trol Interface-Coding Decoding (TCI-CD) interface. As CoDec are not standard
in TTCN-3, required ones might be present or not in tools. This is due to the fact
that even though the TCI-CD interface is standard, there is no minimal require-
ment for CoDec implementation. Tool-provided generic CoDec were inadequate
for working with IP traffic. TTCN-3 allows the possibility of implementing new
CoDec, specific to the communication problem being addressed. They have to
be coded in a "lower level” programming language like Java or C++, which we
name platform language. The concept underneath the word platform shows that
the choice between C++ and Java is not only a matter of taste, but it defines
the support that you may get from the environment selected.

The design of a test system architecture that separates implementation de-
tails from the test definition itself helps achieving a high level of abstraction in
the test definition language. On the other hand, it imposes additional complexity
to the test development process: handling of communicable types has to be done
both in the abstract TTCN-3 specification and in the platform language special-
ized CoDec. Every time the low-level types are reviewed, pieces of highly coupled
yet independent code, developed in different languages, have to be altered and
kept synchronized manually.

The objective of the present work is to present and discuss the experience
gathered producing test suites for different IPv6 protocols in TTCN-3 language,
code engineering options and how we solved the puzzle to allow reusability and
maintainability of test suites. During this process, a framework for the testing
of IPv6 based protocols was defined and implemented. This framework, named
IPv6 Testing Toolkit, provides enough flexibility for software reuse with mini-
mal or no code modifications. Existing works, like [9,10] considered during the
development.

The paper is organized as follows. In Section 2 we present intermediate works
that addressed the problem from a different approach and help motivating cur-
rent framework. Section 3 summarizes the main problems addressed, puts to-
gether the experience gathered through previous experiments and points out the
decisions that lead to the development of the toolkit. Afterward, in Section 4 the
CoDec Generator is introduced. The toolkit with a few examples is shown in 5.
The work concludes in Section 6, where also future lines of work are presented.

2 Highlights of intermediate solutions

With the goal of producing an adequate framework for IPv6 protocol testing,
several different approaches for test engineering were experimented. Some of
them are worth to be described, some others are not.

Since our first approach into the TTCN-3 world, the main problems found
were the low level data handling requirements imposed by IPv6. The problems
ranged from IPv6 network addresses manipulation to reception of unexpected
-but still valid and conformant- data. State-of-the-art IPv6 testing requirements
do not impose highly complicated signaling patterns, but very detailed com-
position of messages and a bitwise inspection of incoming messages. TTCN-3
language design addresses mainly the high level part of the testing problem, re-
laying the low level, bit oriented work to specialized pieces of code not specified
in TTCN-3.

2.1 Some TTCN-3 considerations

Before going into further details, lets just review some TTCN-3 concepts. Ac-
cording to [6], a TTCN-3 test system can be thought conceptually as a set
of interacting entities, each implementing a specific test functionality. Figure 1
shows the general structure of a TTCN-3 test system. We will focus on the main
concepts addressed by this work.

TCI
S (8]
[0
zz Q
5 o2 o
§ £ a
S o
TRI

System Under Test (SUT)

Fig. 1. Conceptual architecture of TTCN-3

The TTCN-3 Executable (TE) interprets and executes TTCN-3 modules.
The Test Logging (TL) entity performs test event logging and presentation
to the Test System User. SA, which stands for SUT Adaptor (System Under
Test Adaptor), ”adapts” communications between the TTCN-3 system and the

SUT. The Platform Adaptor (PA) implements external functions and provides
a TTCN-3 system with a single notion of time. TE can be distributed among
several test devices. The Component Handling (CH) implements communication
between distributed test system entities. The Test Management (TM) entity is
responsible for overall management of a test system. Finally, the Coding and
Decoding (CD) entity is responsible for the encoding and decoding of TTCN-3
values into bitstrings suitable to be sent to the SUT. All this definitions can be
found (and were taken from) [1,5, 6].

TTCN-3 standards do not define some other concepts associated to the
TTCN-3 world, which are required here. Due to the fact that our approach
is the application of TTCN-3 technology in a cutting-edge field, we are con-
cerned with implementation and field problems. Some of those problems are not
addressed by TTCN-3 standards. Let us take them from the Go4IT project®.
The project is also concerned with tools and practical testing issues. They found
the lack of some definitions too, and they propose definitions for them. The
GodlIT project defines the TTCN-3 Development Environment as the following
set of tools: an Integrated Development Environment (IDE) for ATS edition; an
adaptation layer IDE; runtime modules; debugger. We shall refer briefly to the
TTCN-3 Development Environment as a TTCN-3 tool or simply, tool.

2.2 Initial Problems

The test development process induced by TTCN-3 mainly splits the work in two
different development tasks. The first one directly related to the definition of
the message exchange, related to the abstract idea of test execution. The second
one addresses crafting and bitwise coding and decoding of exchanged messages.
These two different tasks, even though tightly related, are addressed by different
experts with deep IPv6 skills, using different languages: the first task requires
TTCN-3 specification, while the second one, platform language codification, in
our case C++.

These two different tasks are combined through the TCI-CD interface, a
TTCN-3 specialized interface for the decoupling of abstract and low level mes-
sage handling. Its goal is to permit the data exchange between the TTCN-3 data
structures and the platform language, which is in charge of performing low level
or specialized tasks. To avoid obscure data manipulation practices, we decided
to completely map TTCN-3 types into platform language ones and vice versa.
In this way, we would share a common modeling of the communication messages
and objects both in the platform language and in the TTCN-3 test specification.
Low level manipulation would be done in the C++ view of the data, while test
related decisions would be taken on the high level model done in TTCN-3 types.
The link between these two representations is given by the encode and decode
operations of the TCI interface, which were developed too.

After our first complete implementation of a test suite following this ap-
proach [11], we realized that this process (named CoDec development from here

! http://www.god-it.org/

on) is tedious and error-prone. Whenever there is a C++ or TTCN-3 require-
ment that forces some change in the type definition, the counterpart also has
to be corrected accordingly. Differences in the expressiveness of the type defini-
tion structures of both languages induces non transparent data transformation
procedures.

Additionally, IPv6 is not just a protocol, but a protocol suite. It forces us
to handle different, simultaneous, not always related IPv6 message exchanges.
This forces us to be able to handle all possible incoming IPv6 messages, even
though we are interested in testing some specific behavior. Transmission is not
a problem, as we are in control of which messages to transmit.

2.3 Reusing an existing tool: Ethereal

Trying to minimize the complexity of the CoDec developed, the decision taken
was to make an attempt to use an existing tool for solving the decodification
of incoming packets. The goal is to avoid the complexity of manually decoding
an arbitrary incoming IPv6 packet and having the task done by the Ethereal
tool [12]. Ethereal is a well known tool extensively used in the IP world. It
provides several benefits like: it is well known, it evolves with new protocols,
it is maintained, it is community-validated and it is free. Considering all these
benefits, we decided to perform the low level decoding of incoming messages
using Ethereal and interface it with TTCN-3 through the TCI-CD interface.

Several transformation formats and tasks were required to interface Ethereal
with TTCN-3. Data received through the Platform Adaptor reaches the TCI-
CD interface in a TTCN-3 format. Even though it is the bitstring representation
of the packet, it is received as a TTCN-3 string. It has to be transformed into
something understandable by Ethereal. Then, Ethereal’s output has to be parsed
and used to assemble the TTCN-3 objects that will hold the received message.
Amongst the different Ethereal output formats, PDML (Packet Details Markup
Language) [13] format was chosen, an XML representation of network packets.
The library 1libxml was used to parse the PDML description of the packet and
have access to all of its parts.

Even though it was possible to reuse the tool and avoid the complexity of
packet parsing, interfacing Ethereal is not a minor task. Most of all, not all prob-
lems were solved using Ethereal.

Problems due to the use of Ethereal

Even though Ethereal tool greatly solved the problem of parsing incoming mes-
sages, it does only provide that. Message transmission is done independently
from Ethereal. This solution lacks of a symmetrical treatment for transmission
and reception operations.

Moreover, as PDML is neither standard nor stable, thus the mapping has to
be reviewed every time Ethereal is updated. Ethereal also does not decode parts
of the packets which are important for our purposes (i.e. content of padding
fields), thus, it is necessary to patch Ethereal to meet our requirements. The
amount of C+4 code to maintain did not shrink, and the solution become more

complicated for deploying, as an additional external dependency was added. The
complexity was shifted from packet parsing into interfacing and data transfor-
mation, but still a simple and elegant solution is missing.

The sum of all these problems suggested us to abandon this approach.

3 Summary of main addressed problems

This Section summarizes technological needs and problems faced before the de-
velopment of the CoDec Generator. It shows relevant problems and solutions
found, our vision of what is required from a testing tool and the issues that
motivated our decisions.

It is worth mentioning that the problems introduced by the use of Ethereal,
are not due to Ethereal itself or the reuse of existing tools. Not all the different
usages of Open/Free solutions were discarded as happened with the previous
example. Functional extensions were successfully added to Ethernet ports using
the libraries 1ibpcap[14] and libnet[15], as presented in [16]. These extensions
are now included in all of our tools. What was addressed and solved are some
specific requirements of IPv6 protocol testing, but did not solve the main issues
regarding an adequate protocol testing framework. The main problems that were
faced and had to be addressed are presented in this Section.

3.1 CoDec specific problems

As stated before in Section 2, CoDec development, integration and maintenance
represent the main issue for us using TTCN-3 for IPv6 testing. This is due to the
fact that manual synchronization of types has to be done in two languages: C++
and TTCN-3. Moreover, there is a group of operations whose natural place is
the CoDec itself. For example, operations like checksum and length calculation
can be seen more like a transmission problem than a test logic problem, thus
the coding process is a natural place for performing these operations. We would
like to integrate these operations in the test development process in a more
automated way.

Another aspect that becomes clear after working with CoDec implementation
is that the TCI-CD is only an API designed for data exchange, not for data
manipulation. Standard TTCN-3 data manipulation from the platform language
is required for easy and efficient CoDec development. We realized that there are
no standard libraries for manipulation of TTCN-3 data in an intuitive, efficient
and uniform way across the different types. Standard operations in languages
like C++ (i.e. casting, type conversion, etc.) cannot be performed in TTCN-3
in a simple and type independent way. To ease CoDec generation we find it
necessary to be able to develop a library that provides a value-type handling
similar to the one used in the platform language.

At a certain moment in time, three different groups of our team were coding
different IPv6 test suites for independent protocols. We faced severe problems for

IPv6 core protocol type definitions due to the fact that there is not a methodol-
ogy or tool support for separating test specific issues from standard (library-like)
routines or processes.

Several other small factors also accounted, but we might want to point out as
a last relevant problem that our near-future requirements imposed us the need
of a strong workload on the CoDec side. Encryption and Security handling can
be seen as further layers of encapsulation of message encoding operations. This
requires that good software engineering practices are applied to all the software
development process. TTCN-3 does not provide means for adequate handling of
these operations and completely manual implementation of all operations would
become not feasible, or at least, extremely complex.

3.2 Empirical observations

Apart of previously mentioned problems, our TTCN-3 experience also showed
empirical facts that oriented us in subsequent decisions. The first one, that is
almost evident, is that there is a high level of redundancy between TTCN-3
and C++ code. Due to the fact that the development process applied started
from the abstract side, it is the the C++ code that repeats TTCN-3 structures.
The C++ code which implements the CoDec is only a mean for representation
conversion between physical messages and TTCN-3 data types.

Other relevant observation performed is that TTCN-3 type definition already
holds most of the information required for coding and decoding. Most of the plat-
form language code mainly repeats TTCN-3 one. The addition is a few metadata
information (like type length for some data types) and specific algorithms for
coding/decoding particular fields in non-standard ways. Also precedence in cod-
ing/decoding operations has to be specified, as calculating the length field and
afterward the checksum is not the same than the reverse order.

3.3 Approach followed

The objective is to simplify test suite development process by minimizing CoDec
development and maintenance work. This can be achieved separating all that
can be automatized from what really has to be provided (because cannot be ex-
pressed in TTCN-3 language). This separation can be done by extending TTCN-
3 adding the missing logic, dependencies and semantic which are not present in
the standard language.

The tool that automatically performs these tasks will be referred as the CoDec
generator from now on and will be the subject of Section 4. The initial cost of
development a CoDec Generator is higher than simply developing a CoDec for a
single test suite. The main advantage of the CoDec Generator is that it can be
reused through different tests. In this way, the test dependent part of the CoDec
remains independent from the CoDec generator. The CoDec generator becomes
a part of our test platform and test development process. Only the platform
language code and logic added to the TTCN-3 abstract specification is part of

the test suite. The pieces of platform language code which serve as input for the
CoDec Generator will be referred as codets.

4 The CoDec Generator

The CoDec Generator is a generic tool that fully automatizes the task of CoDec
development. It takes the TTCN-3 code and codets (additional logic developed
in the platform language) and produces a CoDec that implements the TCI-CD
interface, providing the required coding and decoding facilities. Even though it
was developed while addressing IPv6 protocol testing, the CoDec generator was
carefully designed and developed as an ”universal” tool, and can be used for
CoDec generation in any testing domain. The only bias introduced by our IPv6
requirements is the order in which features were developed and that the platform
language for which it is currently implemented is C++-.

The underlying idea behind CoDec Generator was already presented as our
work methodology during previous sections: each TTCN-3 type is mapped to a
platform language object and customized conversion means are provided using
codets. The idea of having different levels of abstraction, and thus, different
data models in the CoDec and in the TTCN-3 abstract test specification was
discarded as it would always require a very specialized CoDec. In such case, the
CoDec expert and the TTCN-3 expert would have different views of the problem
and would not even share a common data model of the problem.

The mapping implemented by the CoDec Generator is not performed directly
to platform language objects, but to a hierarchy of objects designed to provide
a comfortable framework for data handling inside the CoDec. We will return to
this point in 4.2. The rest of this section provides a quick glimpse of the CoDec
Generator.

4.1 Architecture

The CoDec Generator implements a TTCN-3 parser, built using bison[17]/flex[18]
Open/Free tools. The implemented parser is responsible of extracting basic type
information and structure from standard TTCN-3 code. Even though only type
information is strictly required for CoDec Generation, a parser that accepts the
complete TTCN-3 language was developed, which is another spin-off of this work.
Type information is further augmented (as shown in 4.3) with codets that per-
form specific operations between the TTCN-3 object and the low level, platform
language managed codification.

The way in which the CoDec Generator is integrated into the native TTCN-3
framework is straightforward and simple. As it does not produce changes into the
TTCN-3 code, no particular care has to be taken while developing TTCN-3 ATS.
The CoDec Generator shall be invoked prior to TTCN-3 link-edition phase, so
the actual CoDec is generated for the ETS. The CoDec Generator may produce
platform language sources, objects or libraries, according to the TTCN-3 tool
requirements. Depending on the options provided by TTCN-3 tool, it can be

included into user defined link edition commands and invoked transparently
from the tool environment.

4.2 testing toolkit library - ttlib::

The ttlib:: provides basically functions for data type management and data
coding and decoding. The library provides adequate definitions that allow the
mapping of all TTCN-3 types and data structures into special platform ob-
jects. Platform objects were engineered using platform language (C++ or Java)
Object-Oriented properties (inheritance, polymorphism, etc.) so as to allow
homogeneous and simple access to all types. The figure 2 shows the class-
inheritance diagram for the objects that maps TTCN-3 primitive types.

ttlib::Variable

ttlib:PrimitiveT ype

|t‘t|ib::Bits1ring ‘ ‘ ttlib:: Boolean |t1|\b Bytestring ‘ | ttlibi:Hexstring | |tt||b Integer ‘ |tl|ib:\l'erdict |

A /
ttlib::DBitstring |t‘t||b Charstring | | ttlib:: Octetstring | ‘ ttlib:: Signed | | tlib:: Unsigned |

F Y

ttlib::Butfer

Fig. 2. Platform basic type hierarchy.

This ensures a minimum interface (set of member methods) available for all
the objects. All objects implement their own Encode () and Decode () methods,
main reason for a CoDec. Methods like GetValueHexa() and SetValueHexa()
are intended to provide a uniform handling of the value, regardless the object
itself. The implementation would be subclass dependent as the semantic might
differ from a Charstringto an Integer, but a uniform way of accessing primitive
types is provided.

All variables, specializations of class ttlib::Variable, provide a method
Dump that allows textual representation of instance’s value. This method receives
as a parameter an output stream and is intended to provide an aid for CoDec
debugging. Providing a comprehensive guide to the library is beyond the scope
of this section.

4.3 Codet: platform language code extension.

In the general case, direct TTCN-3 type conversion into platform objects and
back is not feasible for complex protocols. Many protocols not only handle un-
known size payloads, but inclusion of unknown options, making it difficult to han-
dle simple type matching and standard codification rules. To help the (de)coding
process, the CoDec Generator accepts codets that perform specialized handling.
This allows the test developer to separate (de)coding logic from test logic and
also to place logic that naturally belongs to (de)coding process in the CoDec.
This approach follows the same design principle of TTCN-3, but addresses rele-
vant software engineering aspects. If no additional input is provided, the CoDec
Generator will produce -if possible- a CoDec that directly maps TTCN-3 types
into bitstrings and vice versa.

Different options of ”logic extensions” were considered during the design of
this version of the CoDec Generator. Maybe the most appealing ones were those
who extended TTCN-3 language. We faced problems: access to a compiler was
required so as to modify it and implement our extensions; our ATS would be non-
portable. Other option considered was to perform the extensions inside comment
blocks. In this way our ATS would still be specified in standard TTCN-3 lan-
guage, but parsing becomes more complex and non standard. The implemented
option considers independent files for both TTCN-3 code and the extensions.

type union ICMPv60ptionSingleType {

SLLOptionType SLLOpt,
TLLOptionType TLLOpt,
RedirectHdOptionType RedirectOpt,
MTUOptionType MTUOpt,
PrefixOptionType PrefixOpt,
ICMPv6UndefinedOptionType UndefinedOpt,

AdvertisementIntervalOptionType AdvertisementInterval,
HomeAgentInformationOptionType HomeAgentInformationOpt

Fig. 3. TTCN-3 type definition for a ICMPv6 options field

Figure 3 shows TTCN-3 type definition for the option field of ICMPv6 and
figure 4 shows the codet to be executed prior to the actual decoding of the
field, specifically, for guessing the type of the option field. We can see that
the matching is done based on TTCN-3 type names and predefined member
names. These member names correspond to the TTCN-3 type that is being
coded and the moment that the operation is to be performed. We will refer
to this possible entry points as codec hooks. Possible codec hooks for decoding
are: PreDecode, PreDecodeField, PostDecodeField, PostDecode. The CoDec

inline void ICMPv60ptionSingleType::PreDecode (Buffer& buffer)
throw (DecodeError) {
UInt8 type;
int position = buffer.GetPosition();
buffer.Read (type, 8);
buffer.SetPosition (position);
SetHypChosenId (map_icmpv6_opttype.GetValue(type));

Fig. 4. Codet for determining the option type for ICMPv60ptionSingleType

generator will replace standard handling for the customized one, according to
the definitions provided, if present. The symmetric processing is applied during
coding time, and the possible codec hooks are: PreEncode, PreEncodeField,
PostEncodeField and PostEncode.

It can be seen on the function definition at figure 4 that the CoDec Gen-
erator also provides a framework for handling DecodeError exception issuing.
EncodeError exceptions are handled too.

4.4 Summary

The CoDec Generator is a generic tool that automatizes the CoDec development
task. It is based on a parser that extract required and available logic already
present in standard TTCN-3 ATS and complements it with codets, pieces of
platform language code, to build the effective CoDec. As it extracts most of type
information from TTCN-3 ATS, the task of repeating TTCN-3 type structure
in the platform language is done automatically, removing the error-prone task of
type structure synchronization from the test developer. Only codets need to be
maintained. The amount of test-specific code becomes smaller, making it easier
to maintain and evolve.

5 The IPv6 Testing Toolkit

The "IPv6 Testing Toolkit” (also referred as the toolkit) is a set of data, functions
and basic mechanisms dedicated to TTCN-3 test development and execution
of IPv6 test suites. The original idea was to provide a library that provides
a higher level of abstraction and specialization to the language TTCN-3 for
IPv6 test suite development. As TTCN-3 definition does not provide means for
compiled and packaged code distribution, the toolkit is a collection of tightly
coupled Open/Free tools, C++ libraries and pieces of TTCN-3 routines and
type definitions.

5.1 Scope

The objective of the toolkit is to allow quick design of IPv6 test suites. To achieve
that, it addresses TTCN-3 design and maintenance issues, as much as providing

off-the-shelf type and data structures required for adequate protocol handling.
For our team, it was not possible to address a stable data type definition until
we solved the CoDec generation issue. At a certain moment in time, there were
3 engineers developing different abstract test suites in parallel for different IPv6
protocols. Until the CoDec Generator was developed, it was impossible to share
the code base of IPv6 definitions. Once the CoDec Generator was available, it
became possible to share common definitions of base types and tools through a
version managed source repository.

Team efforts on IPv6 testing required working in different parts of IPv6 pro-
tocols, ranging from core protocols to OSPFv3 and Network Mobility. Details of
protocols implemented are given in 5.2. Figure 5 shows a graphical representation
of the components, that helps understanding their correlation.

OSPFv3
RIPng
Core IPv6 TTCN-3 ATS cample codes
ATS sample code
N
Z
@)
=
= [TTCN-3 IPv6—oriented helper functions ("libraries")]
Types Types Types Types Types Types Types Types
Pve | |NiEmPor | Iy iocont| | ICMPY6| | MIPv6 | | RiPng | ~~ | TcP || upPp
Discovery 5
s
5}
=l
,,) HP R PP D
R R R I N - :
Q
a
’_;_‘ CoDets | | CoDets | | CoDets | | CoDets | | CoDets | | Codets Codets Codets 8
+ .
&) IPv6 | | Neighbor | |Aytoconf| |[ICMPv6 | | MIPv6 | | RIPng TCP UDP é’
= Discovery
0]
an
<
2 i i Too) 2
an
=]
<
’; [System Adaptor Extensions: Functions for sending/receiving/logging Ethernet packets]
S
h=!
h_':: libxmlI2 ethereal libnet libpcap

Other Open/Free tools and libraries used at the System/Platform Adaptor level.

Fig. 5. Graphical representation of toolkit elements

Main types and data structures are readily available and can be used as
sort of building-blocks to design test suites. This cannot be achieved completely
as TTCN-3 does not provide mechanisms for function definition overriding or
library-style distribution.

5.2 The ttlib-ipv6:: library

As an specialization of the tt1ib: : (library presented in 4.2), the testing toolkit
library for IPv6 complements the former by adding functions and tools for
handling IPv6 protocols. It comprises TTCN-3 types, functions and C++ codets
required for handling IPv6 testing in any toolkit-like environment (not only for
our TTCN-3 tool).

The library tt1lib-ipv6:: addresses the following standards:

— IPv6 transmission over Ethernet
RFC2464
— IPv6 and Options
RFC2460, RFC2675, RFC2711, RFC3775, RFC3963
— IPv6 Extension Headers
RFC2460, RFC3775
— ICMPv6 and options
RFC2461, RFC2463, RFC2710, RFC3775
— IPSEC
AH RFC2402, ESP RF(C2406
— NEtwork MObility
RFC3963
— Routing protocols
RIPng RFC2080, OSPFv3 RFC2740, BGP4+ RFC1771 RFC2858
— Transport protocols
UDP (RFC2460 RFC768), TCP (RFC2460 RFC793)

Implementation aspects, like endianness, are implemented for standard IPv6
over Ethernet coding and might require revision prior to the porting to other
deployment scenarios.

5.3 An IPv6/ICMPv6 example

The objective of the example is to show the usage of the toolkit for two simple
operations in ICMPv6 packet transmission: length and checksum calculation.
Even though these operations have to be performed on a packet-by-packet basis,
they were hard to implement in our first test suites [11]. It was understood that it
is an accessory to the test suite, but generic CoDec provided by tool vendors do
not support this kind specialized operations easily. On the other hand, TTCN-
3 is not adequate for this kind of bit-oriented calculations, and it is clearly a
transmission problem. We will do a high level presentation on how to engineer
this problem using the toolkit, without getting into deep technical issues which
are beyond the scope of this paper.

For a complete understanding of how operations are performed, it would be
required to get into details of the TTCN-3 type definition. Let us just concen-
trate on the functional handling of properties and leave aside complete type
description and function invocation details. These aspects alone require a com-
plete section for a good understanding.

Figure 6 shows an extract of the codet that is executed at PostEncode time.
PostEncode is the right moment for length calculation, because it is the last
access provided before encoding is finished and low level representation is re-
turned to the TTCN-3 invoking call. At this point, it is supposed that all upper
level protocol data is already assembled, source and destination IPv6 addresses
too. Length can be thus calculated, and only afterward the checksum (because
it covers also the length field, that has to be filled beforehand).

inline void FrameType::PostEncode (Buffer& buffer) throw (EncodeError) {
<snip>

// IPv6 layer: compute the payload length if not given

Ipv6HeaderType& ipv6 = layer.Get_ipv6();

if (ipv6.computeLength_) {
UInt16& len = ipv6.Get_PayloadLength();
buffer.SetPosition (beginning_of_layer[id]l);
len.SetValue (buffer.GetBitsLeft()/8 - 40);
buffer.SetPosition (buffer.GetPosition() + 32);
buffer.Write (len);

<snip>

// ICMPv6é layer: compute the checksum if not given
ICMPv6MessageType& icmpv6 = layer.Get_icmpv6();
if (icmpv6.computeChecksum_) {
Unsigned& checksum = icmpv6.Get_Checksum();
checksum.SetValue (
ChecksumIPv6 (ip6_pshdr, buffer, id, 2)
)
buffer.SetPosition (beginning_of_layer[idl);
buffer.SetPosition (buffer.GetPosition() + 16);
buffer.Write (checksum);

<snip>

Fig. 6. ICMPv6 Codet fragment for checksum and length calculation

The tags <snip> indicates parts of the source code that were removed for
the sake of simplicity. The first thing that is performed is the length calculation
and stored in the buffer in the right position. More code is removed to keep the
example simple. The checksum calculation function, ChecksumIPv6 (), is part of
the library ttlib-ipv6:: and can be simply invoked. Afterward the checksum
is stored in the transmission buffer and the packet assembly is completed.

The removed pieces of code do not affect calculation and that the remaining
part of the codet is what really performs the calculation. This example shows a

good compromise between what can be automatized, what shall be provided by
the toolkit and what has to be specified in the platform language in the form of
a codet. This codet is part of the toolkit and shall be used, unless it is required
to replace it due to some test requirement.

6 Conclusions & future work

In this work, we presented the IPv6 Testing Toolkit, developed in the TRISA
Laboratory. It comprises a set of libraries, type definitions and tools that help
in the task of IPv6 protocol test suite generation. Moreover, the toolkit itself is
more than a library, because it addresses TTCN-3 gray areas in the transition
from TTCN-3 Abstract Test Suites (ATS) to Executable Test Suites (ETS) and
proposes a solution for problems related to development, reuse and maintenance.
The toolkit main building element is the CoDec Generator, an IPv6 independent
tool that addresses the problem of CoDec development.

The result is a set of free tools, either for IPv6 protocol testing or general
protocol testing. CoDec development complexity was moved into the CoDec
Generator, but it can be reused and maintained independently of the test suites.
Test suite ”source code” now only contains TTCN-3 ATS and codets, which
are platform language extensions helpers for the CoDec Generator. The main
practical result is that these tools simplified our tasks of test development and
maintenance.

The toolkit is not complete already. It is being re-engineered and re-factorized
now that we are confident that it is useful and it will become part of our set
of tools. Future plans include to extend the CoDec Generator to handle Java
codets, so as to implement all TTCN-3 environments. We were also working on
different ways for codet specification. A platform independent codet language is
under analysis too.

References

1. ETSI. ES 201 873-1 Part 1: TTCN-3 Core Language, Version: 3.1.1.
http://webapp.etsi.org/exchangefolder /esi_20187301v030101p.pdf, 2005. [Online;
accesed 19-April-2006].

2. ETSI. ES 201 873-1 Part 2: TTCN-3 Tabular presentation Format (TFT),
Version: 3.1.1. http://webapp.etsi.org/exchangefolder/esi_20187302v030101p.pdf,
2005. [Online; accesed 28-April-2006].

3. ETSI. ES 201 873-1 Part 3: TTCN-3 Graphical presentation Format (GFT),
Version: 3.1.1. http://webapp.etsi.org/exchangefolder/esi_20187303v030101p.pdf,
2005. [Online; accesed 28-April-2006].

4. ETSI. ES 201 873-1 Part 4: TTCN-3 Operational Semantics, Version: 3.1.1.
http://webapp.etsi.org/exchangefolder /esi_20187304v030101p.pdf, 2005. [Online;
accesed 28-April-2006].

5. ETSI. ES 201 873-5 Part 5: TTCN-3 Runtime Interface (TRI), Version: 3.1.1.
http://webapp.etsi.org/exchangefolder/esi_20187305v030101p.pdf, 2005. [Online;
accesed 19-April-2006].

10.

11.

12.

13.

14.

15.

16.

17.

18.

ETSI. ES 201 873-6 Part 6: TTCN-3 Control Interface (TCI), Version: 3.1.1.
http://webapp.etsi.org/exchangefolder/esi_20187306v030101p.pdf, 2005. [Online;
accesed 19-April-2006].

Jens Grabowski and Dieter Hogrefe. Towards the third edition of ttcn. In Gyula
Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors, (TestCom 1999) Testing of
Communicating Systems, Methods and Applications, ISBN 0-7923-8581-0, pages
19-30. Kluwer Academic Publishers, 1999.

Jens Grabowski, Anthony Wiles, Colin Willcock, and Dieter Hogrefe. On the design
of the new testing language ttcn-3. In Hasan Ural, Robert L. Probert, and Gregor
v. Bochmann, editors, (TestCom 2000) Testing of Communicating Systems, Tools
and Techniques, ISBN 0-7923-7921-7, pages 161-176. Kluwer Academic Publishers,
2000.

Theofanis Vassiliou-Gioles, Ina Schieferdecker, Marc Born, Mario Winkler, and
Mang Li. Configuration and execution support for distributed tests. In Gyula
Csopaki, Sarlota Dibuz, and Katalin Tarnay, editors, 12th IFIP International
Workshop ont Testing of Communicating Systems, Testing of Communicating Sys-
tems - Methods and Applications, ISBN 0-7923-8581-0, pages 61-76. Kluwer Ac-
demic Publishers, 1999.

Jianping Wu, Whongjie Li, and Xia Yin. Towards Modeling and Testing of IP
Routing Protocols. In Dieter Hogrefe and Anthony Wiles, editors, Testing of
Communicating Systems In 15th IFIP Testing of Communicating Systems, ISBN
3-540-40123-7, pages 49-62. Springer, 2003.

A. Sabiguero and A. Baire and A. Floch and C. Viho. Using TTCN-3 in the
internet Community: an experiment with the RIPng protocol. TTCN-3 User
Conference 2005 - 6-8 June, Sophia-Antipolis, France (http://www.ttcn-
3.org/TTCN3UC2005/program/Tuesday %207th%20June /Session1/02-
UsingTTCN-3intheinternetcommunity.pdf), 2005.

Ethereal: A Network Protocol Analyzer. http://www.ethereal.com/, 2006. [Online;
accesed 19-April-2006].

PDML Specification. http://analyzer.polito.it/docs/dissectors/PDMLSpec.htm,
2006. [Online; accesed 19-April-2006].

tcpdump/libpcap. http://www.tcpdump.org/, 2006. [Online; accesed 27-April-
2006).

The Libnet Packet Construction Library. http://www.packetfactory.net/libnet/
(last ckecked 27/04/2006), 2006.

Ariel Sabiguero, Anthony Baire, and César Viho. Embeding traffic capturing and
analysis extensions into TTCN-3 System Adaptor. In Winfried Dulz and Wolfgang
Schroder-Preikschat, editor, MMB Workshop Proceedings: Model Based Testing
and Non-Functional Properties of Embedded Systems, ISBN 978-3-8007-2956-2,
pages 27-35. VDE Verlag, 2006.

Bison. http://www.gnu.org/software/bison/, 2006. [Online; accesed 22-April-
2006).

Flex. http://www.gnu.org/software/flex/, 2006. [Online; accesed 22-April-2006].

