
.

.

.

.

.

.

.

Test Specification

SIIT/NAT-PT Conformance Test Suite
Technical Document V 2.2

IRISA (Europe)
TAHI Project (Japan)
TTA/IT Testing Laboratory (Korea)

2

Table Of Contents

1 INTRODUCTION.. 4

2 TEST CASE DESCRIPTION.. 5

3 TERMINOLOGY... 6

4 TOPOLOGY AND TEST CONFIGURATION ... 7

5 NAT-PT CONFORMANCE TEST SUITE..12

5.1 BASIC NAT-PT ...12
5.1.1 Basic Translation..12

5.1.1.1 Translation from IPv4 Network without state in the NAT-PT Box..12
5.1.1.2 Address Translation (!*)...15
5.1.1.3 TrafficClass fields from IPv6 Header ...17
5.1.1.4 IPv6 Options...19

5.1.2 Upper Layer Translation...25
5.1.2.1 TCP Translation..25
5.1.2.2 UDP Translation ...28

5.1.3 ICMPv4 Translation ..30
5.1.3.1 ICMPv4 Error Messages with UDP packet in payload ..31
5.1.3.2 ICMPv4 Error Messages with TCP packet in payload...35
5.1.3.3 ICMPv4 Error Messages with IPv4 options in payload and header..40

5.1.4 ICMPv6 Translation ..46
5.1.4.1 ICMPv6 Informational Messages ...47
5.1.4.2 ICMPv6 Error Messages with UDP packet in payload ..54
5.1.4.3 ICMPv6 Error Messages with TCP packet in payload...59
5.1.4.4 ICMPv6 Error Messages with IPv6 options in payload and header..64

5.1.5 ICMPv6 Error Generation..72
5.1.5.1 HOP Limit set to 0 or 1 & ICMPv6 Time Exceeded Message ...72

5.1.6 MTU Handling & Fragmentation..74
5.1.6.1 Translation of Fragmented packets...74
5.1.6.2 Fragmentation at IPv4 Level (**) ...78

5.1.7 FTP-ALG ..81
5.1.7.1 EPRT...81
5.1.7.2 EPSV ...85

5.1.8 DNS-ALG (*) ...90
5.1.8.1 DNS Query & DNS Response (*) ..90
5.1.8.2 Inverse DNS Query & DNS Response (*)..95

5.2 NAPT-PT...99
5.2.1 Basic NAT-PT ..99
5.2.2 Upper Layer Translation...100

5.2.2.1 UDP Port Translation..100
5.2.2.2 TCP Port Translation ..103

5.2.3 ICMPv6 Translation ..111
5.2.3.1 ICMPv6 Identifier Translation..111

5.2.4 FTP-ALG Extension...115
5.2.4.1 TCP Port translation in EPRT command ..115
5.2.4.2 TCP Port translation in EPSV command ..116

5.3 BI-DIRECTIONAL-NAT-PT... 117
5.3.1 Unidirectionnal NAT-PT..117
5.3.2 Basic Translation..118

5.3.2.1 TOS fields from IPv4 Header..118
5.3.2.2 IPv4 Options...120

5.3.3 Upper Layer Translation...127
5.3.3.1 UDP Packet without UDP checksum..127
5.3.3.2 TCP Translation..129

5.3.4 ICMPv4 Translation ..132

3

5.3.4.1 ICMPv4 Informational Messages ...133
5.3.4.2 ICMPv4 Error Messages with UDP packet in payload ..141
5.3.4.3 ICMPv4 Error Messages with TCP packet in payload...146
5.3.4.4 ICMPv4 Error Messages with IPv4 options in payload and header..151

5.3.5 ICMPv6 Translation ..157
5.3.5.1 ICMPv6 Error Messages with UDP packet in payload ..158
5.3.5.2 ICMPv6 Error Messages with TCP packet in payload...163
5.3.5.3 ICMPv6 Error Messages with IPv6 options in payload and header..168

5.3.6 ICMPv4 Error Generation..175
5.3.6.1 TTL set to 0 or 1 & ICMPv4 Time Exceeded Message ..175

5.3.7 MTU Handling & Fragmentation..177
5.3.7.1 Translation of Fragmented packets...177
5.3.7.2 IPv4/UDP Fragmented Packet without UDP checksum...180
5.3.7.3 DF set to 0 and Fragmentation of IPv6 packets..183

5.3.8 FTP-ALG ..187
5.3.8.1 PORT ..187
5.3.8.2 PASV...190
5.3.8.3 EPRT...194
5.3.8.4 EPSV ...197

5.3.9 DNS-ALG (*) ...201
5.3.9.1 DNS Query & DNS Response (*) ..201
5.3.9.2 Inverse DNS Query & DNS Response(*)...206

6 ANNEXES...210

6.1 IPV4 PACKETS CHECKSUM COMPUTATION.. 210
6.1.1 IPv4 Checksum..210
6.1.2 ICMPv4 Checksum...210
6.1.3 UDP Checksum...210
6.1.4 TCP Checksum..211

6.2 IPV6 PACKETS CHECKSUM COMPUTATION.. 212
6.2.1 Pseudo-header ..212
6.2.2 ICMPv6 Checksum...212
6.2.3 UDP and TCP Checksums ..212

7 REFERENCES ..213

4

1 Introduction

SIIT is a protocol translation mechanism at the edge of the network that allows communication between IPv6-only and
IPv4-only nodes via protocol independent translation of IPv4 and IPv6 datagrams, requiring no state information for the
session. The SIIT proposal assumes that V6 nodes are assigned a V4 address for communicating with V4 nodes.

NAT-PT provides transparent routing to end-nodes in V6 realm trying to communicate with end-nodes in V4 realm and
vice versa. This is achieved using a combination of Network Address Translation and Protocol Translation. Moreover,
NAT-PT uses a pool of V4 addresses for assignment to V6 nodes on a dynamic basis as sessions are initiated across
V4-V6 boundaries. The NAT-PT mechanism uses the SIIT translation rules.

The SIIT Mechanism is described in [RFC2765], Stateless IP/ICMP Translation Algorithm (SIIT), February 2000. The
NAT-PT Mechanism is described in [RFC2766], Network Address Translation - Protocol Translation (NAT-PT), February
2000

The relation of each NAT-PT technology is the following :

- Traditional NAT-PT

Basic NAT-PT: Traditional-NAT-PT allows hosts within a V6 network to access hosts in the V4 network. In a
traditional-NAT-PT, sessions are unidirectional, outbound from the V6 network.

NAPT-PT: NAPT-PT is a variant of NAT-PT that translates transport identifiers such as TCP/UDP port numbers
and ICMP identifiers in addition to IP header. As a consequence, NAPT-PT allows multiple IPv6 nodes to
communicate with IPv4 nodes using a single public IPv4 address.

- Bi-Directional NAT-PT : bi-directional NAT-PT handles sessions in outbound and inbound directions.

A NAT-PT Box MUST take into account Traditional NAT-PT to be conform to the standards. It means that either Basic
NAT-PT either NAPT-PT has to be implemented. Bi-directionnal NAT-PT is optional since the simplest form of NAT-PT
is considered as only one way connectivity. Moreover because a NAT-PT Box acts as a single router, we also have to
run conformance test suite for core protocol on this router.

This documents gives NAT-PT Conformance Tests developed by IRISA with technical inputs from:

- TAHI Project (Japan)
- UNH InterOperability Lab (USA)

Even though this test suite was verified and tested, there may still be a few mistakes. All suggestions are welcome and
can be send to:

• Frédéric Roudaut (frederic.roudaut@irisa.fr)

• César Viho (Cesar.Viho@irisa.fr)

• Annie Floch (annie.floch@irisa.fr)

Test with (*) and (!*) are only described in the extended version of the NAT-PT Conformance Test suite. Their
run is only for informational purpose, if needed.

- (*): Concerns DNS-ALG not really recommanded for NAT-PT

- (!*): Concerns really tricky tests for NAT-PT

5

2 Test Case Description

Each test case of this SIIT/NAT-PT Conformance Test suite is described using the following sections:

Purpose: The goal of this section is to describe briefly in a general way the main aim of the
test case.

References: This section is used to give references in the standards concerning the test
purpose.

Resource Requirement: It describes test equipments needed to perform the test case. It can be hardware
or software need.

Test Requirement: It is used to describe specific configurations for the node to test or for the tester
in order to perform the test case. This section is in fact the initialization part of the
test case.

Discussion: This section gives more specificaly, the aim of the test according our current test
architecture. It can also describe what are the awaited problems.

Packets: All the different requiered packets for the test case will be described in this part.

In the different packets, the following key-words will be deeply used:

XXXXX The value cannot be predicted. This key-word is only used in
packets sent by the NUT. Indeed it is always predictable in
packets sent by the tester. This value can also depend from
other possible predictable fields and from unpredictable fields.
This is the case of IPv4 checksums in packets sent by the NUT
while we cannot predict TTL values. Nevertheless, UDP/TCP
Checksum may be predicted if we know every field defined in the
TCP/UDP pseudo-header and header [RFC2460] [RFC 793].

To calculate : The value can be calculated. It depends from other predictable
fields.

() : The value is not strictely fixed. In packets sent by the tester it is
juste an example of a possible value. Inn packets sent by the
NUT, it means that this value is a consequence of a previous
possible value chosen by the tester.

All the others values are fixed.

Observable Results: This section emphasizes the Observable Results to check by the tester to verify
that the NUT is operating as specified in the standards.

Test Sequence: The test sequence described packet exchanges at the IP Layer level between
entities available in the test case. Packet exchange labeled by a number
references the corresponding test intruction of the “Procedure” section. When the
Packet Exchange is not labeled, it means that it is an observable result.

Postambule: This section gives the current state of the Node Under Test after the test
execution. This part is used to have the Node Under Test in its initial state after a
run of the test case.

Possible Problem: This section gives a description of possible problems that an execution of the test
case could encounter. It discusses know issues which could lead to a “FAIL”
verdict.

A few tests of this test suite need to have the capability to modify the different Link MTUs. Sometimes, the NUT
cannot modify this value. Because NAT-PT is not required to handle PATH MTU Discovery, such tests MUST
be skipped. These tests are described using the symbol **.

6

3 Terminology

Acronyms:

The following acronyms will be used in this document:

TR: Test Router.

TN: Test Node.

NUT: Node Under Test.

RUT: Router Under Test.

Terminology:

The terminology defined in [RFC2765] and [RFC2766] applies also to this document:

IPv4 capable node: A node which has an IPv4 protocol stack. In order for the stack to be usable the node
must be assigned one or more IPv4 addresses.

IPv4 enabled node: A node which has an IPv4 protocol stack and is assigned one or more IPv4 addresses.
Both IPv4-only and IPv6/IPv4 nodes are IPv4 enabled.

IPv6 capable node: A node which has an IPv6 protocol stack. In order for the stack to be usable the node
must be assigned one or more IPv6 addresses.

IPv6 enabled node: A node which has an IPv6 protocol stack and is assigned one or more IPv6 addresses.
Both IPv6-only and IPv6/IPv4 nodes are IPv6 enabled.

IPv4-mapped: An address of the form 0::ffff:a.b.c.d which refers to a node that is not IPv6-capable. In addition
to its use in the API this protocol uses IPv4-mapped addresses in IPv6 packets to refer to an IPv4 node.

IPv4-compatible: An address of the form 0::0:a.b.c.d which refers to an IPv6/IPv4 node that supports
automatic tunneling. Such addresses are not used in this protocol.

IPv4-translated: An address of the form 0::ffff:0:a.b.c.d which refers to an IPv6-enabled node. Note that the
prefix 0::ffff:0:0:0/96 is chosen to checksum to zero to avoid any changes to the transport protocol's pseudo
header checksum.

Application Level Gateway (ALG): Application Level Gateway (ALG) is an application specific agent that
allows a V6 node to communicate with a V4 node and vice versa. Some applications carry network addresses
in payloads. NAT-PT is application unaware and does not snoop the payload. ALG could work in conjunction
with NAT-PT to provide support for many such applications.

PREFIX: a V6 node that needs to communicate with a V4 node needs to use a specific prefix PREFIX::/96) in
front of the IPv4 address of the V4 node. Addresses using this PREFIX will be routed to the NAT-PT gateway
(PREFIX::/96)

7

4 Topology and Test Configuration

Test Architecture:

The NUT node and the tester are connected with 2 links in which no other communications are allowed. The tester uses
a packet generator to send IPv6 packets on the links, and a packet analyzer to see the packets sent by the NUT. The
logical environment represented by this architecture is shown on Figure 1.

Each Link is an R45 crossed cable. One of these links represents the IPv4 Link whereas the other is for the IPv6 Link.

Figure 1: Logical Test Environment for NAT-PT Testing

Addressing:

The following defined values are just an exemple of needed values for this test suite:

• TN1:

MAC address: 00:00:00:00:a1:a1

IPv4 Address: 131.254.199.90 (Given by the NUT)

IPv6 Global address: 3ffe:501:ffff:100:200:ff:fe00:a1a1

IPv6 Link local address: fe80::200:ff:fe00:a1a1

• TN1Bis:

MAC address: 00:00:00:00:a3:a3

IPv4 Address: 131.254.199.91 (Given by the NUT)

IPv6 Global address: 3ffe:501:ffff:100:200:ff:fe00:a3a3

IPv6 Link local address: fe80::200:ff:fe00:a3a3

• TN1Ter:

MAC address: 00:00:00:00:a4:a4

IPv4 Address: 131.254.199.91 (Given By THE NUT)

IPv6 Global address: 3ffe:501:ffff:100:200:ff:fe00:a4a4

IPv6 Link local address: fe80::200:ff:fe00:a4a4

• TN2:

IPv4 address: 131.254.201.1

IPv6 Global Address: 3ffe:501:41c:c1ad::83fe:c901

8

(NAT-PT Address Corresponding To IPv4 Address)

• TR:

MAC address: 00:00:00:00:a0:a0

IPv4 address: 131.254.200.2

IPv6 Global Address: 3ffe:501:41c:c1ad::83fe:c802

(NAT-PT Address Corresponding To IPv4 Address)

• TN3:

IPv4 Address: 131.254.199.92 (Given by the NUT)

IPv6 Global address: 3ffe:501:ffff:200:200:ff:fe00:a0a0

• NAT-PT Box:

NAT-PT Prefix: 3ffe:501:41c:c1ad::/64

Link1 :

Link1 Prefix: 3ffe:501:ffff:100::/64

Global IPv6 address Link1: 3ffe:501:ffff:100::EUI-64 MAC Link1

Link-Local Address Link1: fe80::EUI-64 MAC Link1

Link2 :

IPv4 address Link2: 131.254.200.1

Moreover the NUT MUST always assign the previous defined IPv4 address to TN1, TN1Bis and TN1Ter.

The NAT-PT rules will be the following:

Host IPv6 IPv4

TN1 3ffe:501:ffff:100:200:ff:fe00:a1a1 131.254.199.90

TN1Bis 3ffe:501:ffff:100:200:ff:fe00:a3a3 131.254.199.91

TN1Ter 3ffe:501:ffff:100:200:ff:fe00:a4a4 131.254.199.91

TN3 3ffe:501:ffff:200:200:ff:fe00:a0a0 131.254.199.92

TN1Bis and TN1Ter will use the same IPv4 address for outbound packets.

To complete, this test topology, we need a default IPv4 route for the NUT. It means that on the NUT we should have:

• default IPv4 Route: 131.254.200.2 (TR)

Moreover all traffic to 3ffe:501:ffff:200::/64 will be forwarded to TN1. It involves that all packets to TN3 will be forwarded
to TN1.

On NUT the IPv4 MTU will be set to 1500 when not explicitly precised. We will consider that medias of the IPv4 clouds
are Ethernet Links. As defined in [RFC2464], The default MTU size for IPv6 packets on an Ethernet is 1500 octets.

Moreover for best tests analyze, it could be required to desactivate Router Advertisement from the NUT.

Execution of test cases:

Each test case described here should begin when the NUT is at its initial state, e.g. with empty binding caches. We tried
to limit the test link effect so that the test cases can be executed in sequence. However, some tests will have more
reliable verdicts in a lone run. As no procedure ensures perfect clean-up when a NUT is found to be non conformant, a
reinitialization of the NUT should follow every test case that leads to a verdict « FAIL » .

9

Link-local addresses resolution and ARP:

As part of the Neighbor Discovery protocol [RFC2461], the NUT should send Neighbor Solicitation packets to discover
or probe the link-local address of a node at any time. In most cases, the tester node should respond by a Neighbor
Advertisement packet.

Moreover the Node should too send ARP Packet to discover MAC address From an IPv4 Address. In most cases, the
tester node should also respond by an ARP Reply packet.

With, our test topology, it means that the NUT will send Neighbor Solicitation Packet to probe the link-local address of
TN1 or to discover its MAC address and ARP Request Message to obtain the MAC address of TR.

These default packets are described hereafter. The values set in these packets should be taken as long as no explicit
values are given.

• ARP Request (From NUT to get MAC Address of TR) (length: 28 bytes)

ARP Header (length: 28)

Hardware: 1
Protocol: 2048

HLEN: 6
PLEN: 4

Operation: 1
SenderHAddr: NUT MAC Address Link2
SenderPAdd: NUT IPv4 address Link2

TargetHAddr: XXXXX
TargetPAddr: TR IPv4 address Link2

• ARP Reply (From TR, to give its MAC Address to the NUT) (length: 28 bytes)

ARP Header (length: 28)

Hardware: 1
Protocol: 2048

HLEN: 6
PLEN: 4

Operation: 2
SenderHAddr: TR MAC Address Link2
SenderPAdd: TR IPv4 address Link2

TargetHAddr: NUT MAC Address Link2
TargetPAddr: NUT IPv4 address Link2

• Neighbor Solicitation (From NUT to get MAC Address of TN1, TN1Bis, TN1Ter) (length: 72 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: 0
FlowLabel: 0

PayloadLength: 32
NextHeader: 58
HopLimit : 255

SourceAddress: NUT IPv6 link-local/Global address
DestinationAddress: TN1/TN1Bis/TN1Ter IPv6 solicited node

multicast address

Neighbor Solicitation (length: 32)

Type: 135
Code: 0

Checksum: To Calculate
Reserved: 0

TargetAddress: TN1/TN1Bis/TN1Ter Global IPv6 Address or
TN1/TN1Bis/TN1Ter Link-local Address

10

Option ICMPv6 Source Link Layer (length:8)

Type: 1
Length: 1

LinkLayerAddress: NUT MAC Address Link1

• Neighbor Solicitation (From NUT to check reachability of TN1/TN1Bis/TN1Ter) (length: 72 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: 0
FlowLabel: 0

PayloadLength: 32
NextHeader: 58
HopLimit : 255

SourceAddress: NUT IPv6 link-local/Global address
DestinationAddress: TN1/TN1Bis/TN1Ter Global IPv6
Address or TN1/TN1Bis/TN1Ter Link-local Address

Neighbor Solicitation (length: 32)

Type: 135
Code: 0

Checksum: To Calculate
Reserved: 0

TargetAddress: TN1/TN1Bis/TN1Ter Global IPv6 Address or
TN1/TN1Bis/TN1Ter Link-local Address

Option ICMPv6 Source Link Layer (length:8)

Type: 1
Length: 1

LinkLayerAddress: NUT MAC Address Link1

• Neighbor Advertisement (From TN1/TN1Bis/TN1Ter, to give its MAC Address to the NUT) (length: 72 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: 0
FlowLabel: 0

PayloadLength: 32
NextHeader: 58
HopLimit : 255

SourceAddress: TN1/TN1Bis/TN1Ter Global IPv6 Address or
TN1/TN1Bis/TN1Ter Link-local Address

DestinationAddress: NUT IPv6 link-local/Global address
(Same as the source field in the corresponding Neighbor

Solicitation)

Neighbor Advertisement (length: 32)

Type: 136
Code: 0

Checksum: To calculate
Rflag: 0
Sflag: 1
Oflag: 1

Reserved: 0
TargetAddress: TN1/TN1Bis/TN1Ter Global IPv6 address or

TN1/TN1Bis/TN1Ter Link-local Address
(Same as the Target Address field in the corresponding

11

Neighbor Solicitation)

Option ICMPv6 Target Link Layer (length:8)

Type: 2
Length: 1

LinkLayerAddress: TN1/TN1Bis/TN1Ter MAC Address

12

5 NAT-PT Conformance Test Suite

5.1 Basic NAT-PT

Traditional-NAT-PT allows hosts within a V6 network to access hosts in the V4 network. In a traditional-NAT-PT,
sessions are unidirectional, outbound from the V6 network.

5.1.1 Basic Translation

5.1.1.1 Translation from IPv4 Network without state in the NAT-PT Box

Purpose:

Check Basic Translation from v4 to v6 when state is not present in the NAT-PT Translator.

References:

• [RFC2765] section 3.3

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• No State MUST be present in the NUT before the run of the test.

Discussion:

NAT-PT uses a pool of V4 addresses for assignment to V6 nodes on a dynamic basis as sessions are initiated
across V4-V6 boundaries. It means that if no state is present in the NUT, an IPv6 host located in the NAT-PT
network does not have an IPv4 address allocated. Thus, all IPv4 packets going from the v4 Network MUST be
silently discarded.

Packets:

• IPv4/UDP (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

13

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/TCP (length: 48 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 48

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6
HeaderChecksum: To calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: S/N
AcknowledgmentNumber: A/N

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: 0

PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFLAG
FINFlag: 0

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Echo Request (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

14

ICMPv4 Echo Request (length: 16)

Type: 8
Code: 0

Checksum: To Calculate
Identifier: (512)

SequenceNumber: (0)
Payload (length: 8)

Data: (01234567 89abcdef)

Procedure:

0. No State is present in the NUT

1. TR forwards an “IPv4/UDP” Packet from TN2 to TN1.

2. TR forwards an “IPv4/TCP” Packet from TN2 to TN1. (SYNFlag is set, S/N is set to 1 and A/N is set to 0)

3. TR forwards an “ICMPv4 Echo Request” Packet from TN2 to TN1.

Observable Results:

• Step 1: Because no state is present in the NUT, the NUT MUST silently discard this packet.

• Step 2: Because no state is present in the NUT, the NUT MUST silently discard this packet.

• Step 3: Because no state is present in the NUT, the NUT MUST silently discard this packet.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

TN1 1
IPv4/UDP

<--------------------------- TN2

TN1 2
IPv4/TCP (SYNFlag is set, S/N is set to

1 and A/N is set to 0)
<---------------------------

TN2

TN1 3
ICMPv4 Echo Request

<--------------------------- TN2

15

5.1.1.2 Address Translation (!*)

Purpose:

Check basic address translation, IPv4 Address allocation and UDP basic translation from a v6 network to the v4 Internet

References:

• [RFC2766] Section 5.2

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

IPv6 packets that are translated have a destination address of the form PREFIX::IPv4/96. Thus the low-order
32 bits of the IPv6 destination address is copied to the IPv4 destination address. This test checks that the
correct translation address is done with such address format. Moreover it checks that the correct allocation
address is done for TN1 when source address is TN1 IPv6 Global Address. If destination field if an IPv6
address from another network, packets SHOULD be silently discarded

Packets:

• IPv6/UDP (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 17
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress:

- TN2 IPv6 Global NAT-PT Address
- 3ffe:501:ffff:102::1 (global IPv6

Address)

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1

16

MF: 0
FragmentOffset: 0

TTL: (63) [one less than in the correponding IPv6/UDP
Packet]

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

1. TN1 sends an “IPv6/UDP” Packet to TN2 (src: TN1 IPv6 Global Address, dest: TN2 IPv6 Global NAT-PT
address) .

2. TN1 sends an “IPv6/UDP” Packet to an IPv6 Address without NAT-PT Prefix (src: TN1 IPv6 Global Address,
dest: IPv6 Address 3ffe:501:ffff:102::1). This Packet MUST be send to the NUT. I.e the destination MAC
address is the NUT MAC address.

3. (!*) TN1 sends an “IPv6/UDP” Packet to TN2 (src: TN1 Link-local Address, dest: TN2 IPv6 Global NAT-PT
address) .

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/UDP” and sends it to TN2

• Step 2: NAT-PT SHOULD silently drop this Packet

• (!*) Step 3: The NUT translates this packet in “IPv4/UDP” and sends it to TN2

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

TN1
IPv6/UDP

---------------------------> 1 TN2

TN1 Step1
IPv4/UDP

---------------------------> TN2

TN1
IPv6/UDP to 3ffe:501:ffff:102::1

---------------------------> 2

TN1
IPv6/UDP

---------------------------> 3 (!*) TN2

TN1 (!*)Step3
IPv4/UDP

---------------------------> TN2

17

5.1.1.3 TrafficClass fields from IPv6 Header

Purpose:

Check correct translation of the TrafficClass Field of the IPv6 Header

References:

• [RFC2765] Section 5.2

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• The implementation should have the possibility to ignore the IPv6 Traffic Class and always set the IPv4 “TOS”
field to 0

Discussion:

The IPv4 TOS Field is by default copied from the IPv6 Traffic Class field, Nevertheless, all implementations
SHOULD provide the ability to ignore the IPv6 traffic class and always set the IPv4 "TOS" to zero.”

Packets:

• IPv6/UDP (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: 255

FlowLabel: (0)
PayloadLength: 16

NextHeader: 17
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0 or 255
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the correponding IPv6/UDP

Packet]
Protocol: 17

18

HeaderChecksum: To calculate
 SourceAddress: TN1 IPv4 Address given by The NUT

DestinationAddress: TN2 IPv4 Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

1. TN1 sends an “IPv6/UDP” Packet to TN2 with TrafficClass set to 255.

2. The Implementation activates the ability to ignore the IPv6 TrafficClass field and always set the IPv4 “TOS” to
0.

3. TN1 sends an “IPv6/UDP” Packet to TN2 with TrafficClass set to 255.

4. The Implementation desactivates the ability to ignore the IPv6 TrafficClass field.

Observable Results:

• Step 1: The NUT Translates this packet in “IPv4/UDP” with TOS also set to 255 and sends it to TN2

• Step 3: The NUT Translates this packet in “IPv4/UDP” with TOS set to 0 and sends it to TN2

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

TN1
IPv6/UDP (Traffic Class = 255)

----+-----------------------> 1 TN2

TN1 Step1
IPv4/UDP (TOS = 255)

---------------------------> TN2

2: Activation of the ability to
ignore the IPv6 TrafficClass field

TN1
IPv6/UDP (Traffic Class = 255)

---------------------------> 3 TN2

TN1 Step3
IPv4/UDP (TOS = 0)

---------------------------> TN2

4: Desactivation of the ability to
ignore the IPv6 TrafficClass field

19

5.1.1.4 IPv6 Options

Purpose:

Check Translation of IPv6 Options.

References:

• [RFC2765] section 4.1

• [RFC2766] Section 5.3

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

If any of an IPv6 hop-by-hop options header, destination options header, or routing header with the Segments
Left field equal to zero are present in the IPv6 packet, they are ignored..

Moreover, If a routing header with a non-zero Segments Left field is present then the packet MUST NOT be
translated, and an ICMPv6 "parameter problem/ erroneous header field encountered" (Type 4/Code 0) error
message, with the Pointer field indicating the first byte of the Segments Left field, SHOULD be returned to the
sender.”

Packets:

• IPv6/UDP 1 (with Hop by Hop Extension) (length: 64 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 24
NextHeader: 0
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Hop by Hop Option Header (length: 8)

NextHeader = 17
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv6/UDP 2 (with Destination Option Header) (length: 64 bytes)

20

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 24
NextHeader: 60
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Destination Option Header (length: 8)

NextHeader = 17
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv6/UDP 3 (with Routing Header Type 0 with Segments Left =0) (length: 64 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 24
NextHeader: 43
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Routing Header (length: 8)

NextHeader = 17
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

21

• IPv6/UDP 4 (with Hop by Hop Extension, Destination Option Header, Routing Header Type 0 with Segments
Left = 0, Destination Option Header) (length: 88 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 48
NextHeader: 0
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Hop by Hop Option Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Destination Option Header (length: 8)

NextHeader = 43
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Routing Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

Destination Option Header (length: 8)

NextHeader = 17
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv6/UDP 5 (with Routing Header Type 0 with Segments Left > 0) (length: 96 bytes)

22

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 43
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: NUT IPv6 Global Address Link1

Routing Header (length: 40)

NextHeader = 17
HeaderExtLength = 4

RoutingType = 0
SegmentsLeft = 2

Reserved = 0
Address = TR IPv6 Global NAT-PT Address
Address = TN2 IPv6 Global NAT-PT Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the correponding IPv6/UDP

Packet]
Protocol: 17

HeaderChecksum: To calculate
 SourceAddress: TN1 IPv4 Address given by The NUT

DestinationAddress: TN2 IPv4 Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Parameter Problem (length: 144 bytes)

23

IPv6 Header (length: 40)

Version: 6
TrafficClass: 0
FlowLabel: 0

PayloadLength: 104
NextHeader: 58

HopLimit : XXXXX
SourceAddress: NUT IPv6 Global Address Link1

DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Parameter Problem (length: 104)

Type: 4
Code: 0

Checksum: To Calculate
Pointer: 43

Payload (length: 96)
Data: the corresponding IPv6/UDP 5 Packet

Procedure:

1. TN1 sends an “IPv6/UDP 1” (with Hop by Hop Extension) to TN2.

2. TN1 sends an “IPv6/UDP 2” (with Destination Option Header) to TN2.

3. TN1 sends an “IPv6/UDP 3” (with Routing Header Type 0 with Segments Left =0) to TN2.

4. TN1 sends an “IPv6/UDP 4” (with Hop by Hop Extension, Destination Option Header, Routing Header Type 0
with Segments Left = 0, Destination Option Header) to TN2.

5. TN1 sends an “IPv6/UDP 5” (with Routing Header Type 0 with Segments Left>0) to TN2.

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/UDP” and sends it to TN2. In this new packet the UDP
checksum has to be adjusted.

• Step 2: The NUT translates this packet in “IPv4/UDP” and sends it to TN2. In this new packet the UDP
checksum has to be adjusted.

• Step 3: The NUT translates this packet in “IPv4/UDP” and sends it to TN2. In this new packet the UDP
checksum has to be adjusted.

• Step 4: The NUT translates this packet in “IPv4/UDP” and sends it to TN2. In this new packet the UDP
checksum has to be adjusted.

• Step 5: NAT-PT MUST drop this Packet and SHOULD send an “ICMPv6 Parameter Problem” packet to TN1.

24

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

TN1
IPv6/UDP (with Hop by Hop

Extension)
--------------------------->

1
TN2

TN1 Step1
IPv4/UDP

---------------------------> TN2

TN1
IPv6/UDP (with Destination Option

Header)
---------------------------> 2 TN2

TN1 Step2
IPv4/UDP

---------------------------> TN2

TN1
IPv6/UDP ((with Routing Header Type

0 with Segments Left =0)
---------------------------> 3 TN2

TN1 Step3
IPv4/UDP

---------------------------> TN2

TN1
IPv6/UDP (with Hop by Hop Extension,

Destination Option Header, Routing
Header Type 0 with Segments Left =

0, Destination Option Header)
--------------------------->

4
TN2

TN1 Step4
IPv4/UDP

---------------------------> TN2

TN1
IPv6/UDP (with Routing Header Type 0

with Segments Left>0)
---------------------------> 5 TN2

TN1
ICMPv6 Parameter Problem

<--------------------------- Step5

25

5.1.2 Upper Layer Translation

5.1.2.1 TCP Translation

Purpose:

Check translation of TCP Packets

References:

• [RFC2766] section 5.2

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

The TCP checksum should be adjusted to account for the address changes, going from V6 to V4 addresses.

Packets:

• IPv6/TCP (length: 60 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 20
NextHeader: 6
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

TCP (length: 20)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: S/N
AcknowledgmentNumber: A/N

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFlag
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFlag
FINFlag: FINFlag

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

Payload (length: 0)

• IPv4/TCP (length: 40 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

26

TypeOfService: (0)
TotalLength: 40

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the IPv6/TCP]

Protocol: 6
HeaderChecksum: To calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

TCP (length: 20)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: S/N
AcknowledgmentNumber: A/N

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFLAG
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFLAG
FINFlag: FINFLAG

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

Payload (length: 0)

Procedure:

Open a TCP Connection

1. TN1 sends an “IPv6/TCP” packet to TN2. (SYNFlag is set, S/N is set to 1 and A/N is set to 0)

2. TR forwards an “IPv4/TCP” packet from TN2 to TN1. (SYNFlag and ACKFlag are set, S/N is set to 10 and A/N
is set to 2)

3. TN1 sends an “IPv6/TCP” packet to TN2. (ACKFlag is set, S/N is set to 2 and A/N is set to 11)

Close the TCP Connection

4. TN1 sends an “IPv6/TCP” packet to TN2. (FINFlag and ACKFlag are set, S/N is set to 2 and A/N is set to 11)

5. TR forwards an “IPv4/TCP” packet from TN2 to TN1. (ACKFlag is set, S/N is set to 11 and A/N is set to 3)

6. TR forwards an “IPv4/TCP” packet from TN2 to TN1. (FINFlag and ACKFlag are set, S/N is set to 11 and A/N
is set to 3)

7. TN1 sends an “IPv6/TCP” packet to TN2. (ACKFlag is set, S/N is set to 3 and A/N is set to 12)

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/TCP” and sends it to TN2. In this new packet the TCP
checksum has to be adjusted. (SYNFlag is set, S/N is set to 1 and A/N is set to 0)

• Step 2: The NUT translates this packet in “IPv6/TCP” and sends it to TN1. In this new packet the TCP
checksum has to be adjusted. (SYNFlag and ACKFlag are set, S/N is set to 10 and A/N is set to 2)

• Step 3: The NUT translates this packet in “IPv4/TCP” and sends it to TN2. In this new packet the TCP
checksum has to be adjusted. (ACKFlag is set, S/N is set to 2 and A/N is set to 11)

• Step 4: The NUT translates this packet in “IPv4/TCP” and sends it to TN2. In this new packet the TCP
checksum has to be adjusted. (FINFlag and ACKFlag are set, S/N is set to 2 and A/N is set to 11)

• Step 5: The NUT translates this packet in “IPv6/TCP” and sends it to TN1. In this new packet the TCP
checksum has to be adjusted. (ACKFlag is set, S/N is set to 11 and A/N is set to 3)

27

• Step 6: The NUT translates this packet in “IPv6/TCP” and sends it to TN1. In this new packet the TCP
checksum has to be adjusted. (FINFlag and ACKFlag are set, S/N is set to 11 and A/N is set to 3)

• Step 7: The NUT translates this packet in “IPv4/TCP” and sends it to TN2. In this new packet the TCP
checksum has to be adjusted. (ACKFlag is set, S/N is set to 3 and A/N is set to 12)

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

Open The TCP Connection

TN1
IPv6/TCP (SYN) S/N:1,A/N:0

---------------------------> 1 TN2

 Step1
IPv4/TCP

---------------------------> TN2

TN1 2
IPv4/TCP (SYN,ACK) S/N:10,A/N:2
<--------------------------- TN2

TN1
IPv6/TCP

<--------------------------- Step2

TN1
IPv6/TCP (ACK) S/N:2,A/N:11

---------------------------> 3 TN2

 Step3
IPv4/TCP

---------------------------> TN2

Close The TCP Connection

TN1
IPv6/TCP (FIN,ACK) S/N:2,A/N:11
---------------------------> 4 TN2

 Step4
IPv4/TCP

---------------------------> TN2

TN1 5
IPv4/TCP (ACK) S/N:11,A/N:3

<--------------------------- TN2

TN1
IPv6/TCP

<--------------------------- Step5

TN1 6
IPv4/TCP (FIN,ACK) S/N:11,A/N:3

<--------------------------- TN2

TN1
IPv6/TCP

<--------------------------- Step6

TN1
IPv6/TCP (ACK) S/N:3,A/N:11

---------------------------> 7 TN2

 Step7
IPv4/TCP

---------------------------> TN2

28

5.1.2.2 UDP Translation

Purpose:

Check Translation of UDP Packets

References:

• [RFC2766] Section 5.2

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

The UDP checksum should be adjusted to account for the address changes, going from V6 to V4 addresses.

Packets:

• IPv6/UDP (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 17
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the correponding IPv6/UDP

Packet]
Protocol: 17

HeaderChecksum: To calculate
 SourceAddress: TN1 IPv4 Address given by The NUT

29

DestinationAddress: TN2 IPv4 Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

1. TN1 sends an “IPv6/UDP” packet to TN2.

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/UDP” and sends it to TN2. In this new packet the UDP
checksum has to be adjusted.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

TN1
IPv6/UDP

---------------------------> 1 TN2

TN1 Step1
IPv4/UDP

---------------------------> TN2

30

5.1.3 ICMPv4 Translation
An ICMPv4 Error Packet has sometimes an IPv4 Packet in its payload. In this part we will consider that the translation of
the inner IP header has to be done. Indeed, what is the need to translate an ICMPv4 error message if the inner part is
not also translated?

The ICMP message format is specified by the value of the Type field:

0 Echo reply.

1 Reserved.

2 Reserved.

3 Destination unreachable.

4 Source quench.

5 Redirect.

6 Alternate Host Address.

8 Echo request.

9 Router advertisement.

10 Router solicitation.

11 Time exceeded.

12 Parameter problem.

13 Timestamp request.

14 Timestamp reply.

15 Information request.

16 Information reply.

17 Address mask request.

18 Address mask reply.

19 Reserved (for security).

20-29 Reserved (for robustness experiment).

30 Traceroute.

31 Conversion error.

32 Mobile Host Redirect.

33 IPv6 Where-Are-You.

34 IPv6 I-Am-Here.

35 Mobile Registration Request.

36 Mobile Registration Reply.

37 Domain Name request.

38 Domain Name reply.

39 SKIP Algorithm Discovery Protocol.

40 Photuris, Security failures.

41-255 Reserved.

31

5.1.3.1 ICMPv4 Error Messages with UDP packet in payload

Purpose:

Check translation of ICMPv4 Error Messages with a UDP packet in payload

References:

• [RFC2765], Section 3.3

• [RFC 2765] Page 15 :

“….

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers.”

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

This test checks the correct translation of ICMPv4 Error Messages with a UDP packet included in payload. The
ICMP checksum should be adjusted to account for the address change, going from V4 to V6 addresses. The
inner IP header has also to be translated.

Packets:

• IPv6/UDP (length: 48 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 8
NextHeader: 17

HopLimit : (64) [Same as in IPv4/UDP]
SourceAddress: TN1 IPv6 Global Address

DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To calculate

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 / ICMPv6 Error Type 3 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

32

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big /
ICMPv6 Time Exceeded

(length: 56)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 4 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Parameter Problem (length: 56)

Type: 4
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• IPv4/UDP(length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 28

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

 Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

33

Length: 8
Checksum: To Calculate

• ICMPv4 Error Type 3 / ICMPv4 Error Type 11 (length: 56 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 56

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Destination Unreachable
Or

ICMPv4 Time Exceeded
(length: 36)

Type: 3 or 11
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 28)
Data: Same as IPv4/UDP Packet

• ICMPv4 Error Type 12 (length: 56 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 56

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Parameter Problem
(length: 36)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Unused: 0

34

Payload (length: 28)
Data: Same as IPv4/UDP Packet

Procedure:

1. TN1 sends an IPv6/UDP Packet to TN2

2. Send “ICMPv4 Error Message” from TR to TN1 incrementing type and code. The inner part of these known
packets contains an IPv4/UDP layer. Then, go back to Step 1.

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/UDP” and sends it to TN2. In this new packet the UDP
checksum has to be adjusted.

• Step 2: These Packets must be silently dropped except for cases indicated in the table presented hereafter:

ICMPv4 Packet ICMPv6 Corresponding Packet

Type = 3, Code = 0,1,5,6,7,8,11 or 12 Type = 1, Code = 0 (no route to destination)

Type = 3, Code = 2 (Protocol unreachable error) Type = 4, Code = 1 (unrecognized Next Header type encountered)
and make the Pointer point to the IPv6 Next Header field

Type = 3, Code = 3 (port unreachable) Type = 1, Code = 4 (port unreachable)

Type = 3, Code = 4 (fragmentation needed and DF
set)

Type = 2, Code = 0 (Too Big message) and the The MTU field
needs to be adjusted

Type = 3, Code = 9, 10 (communication with
destination host administratively prohibited)

Type = 1, Code = 1(communication with destination host
administratively prohibited)

Type = 11 (Time Exceeded) Type = 3 (Time Exceeded) and the code field is unchanged

Type = 12 (Parameter Problem) Type = 4 and the pointer need to be adjusted to point to the
corresponding field in the translated include IP header.

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet the UDP checksum has to be adjusted.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1
IPv6/UDP

---------------------------> 1 TN2

TN1 Step1
IPv4/UDP

---------------------------> TN2

TN1 2
ICMPv4 Error

<--------------------------- TR

TN1
ICMPv6 Error (Some)

<--------------------------- Step2 TN2

35

5.1.3.2 ICMPv4 Error Messages with TCP packet in payload

Purpose:

Check translation of ICMPv4 Error Messages with a TCP packet in payload

References:

• [RFC2766], Section 5.3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

This test checks the correct translation of ICMPv4 Error Messages with a TCP packet included in payload. The
ICMP checksum should be adjusted to account for the address change, going from V4 to V6 addresses. The
inner IP header has also to be translated.

Packets:

• IPv6/TCP (length: 68 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 28

NextHeader: 6
HopLimit : (64) [Same as in IPv4/TCP]

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: (0)
AcknowledgmentNumber: (0)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (0)
PSHFlag: (0)
RSTFlag: (0)
SYNFlag: 1
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (length: 116 bytes)

IPv6 Header (length: 40)

Version: 6

36

TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 76)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 68)
Data: Same as IPv6/TCP Packet

• ICMPv6 Error Type 4 (length: 116 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Parameter Problem (length: 76)

Type: 4
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 68)
Data: Same as IPv6/TCP Packet

• IPv4/TCP (length: 48 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 48

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN1 IPv4 Address given by The NUT

37

DestinationAddress: TN2 IPv4 Address

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: (0)
AcknowledgmentNumber: (0)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (0)
PSHFlag: (0)
RSTFlag: (0)
SYNFlag: 1
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Error Type 3 (length: 76 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 76

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Destination Unreachable
(length: 56)

Type: 3
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 48)
Data: Same as IPv4/TCP Packet

• ICMPv4 Error Type 12 (length: 76 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 76

Identifier: 0
Reserved: 0

38

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Parameter Problem
 (length: 56)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Unused: 0

Payload (length: 48)
Data: Same as IPv4/TCP Packet

Procedure:

1. TN1 sends an IPv6/TCP Packet to TN2

2. Send “ICMPv4 Error Message” described in the following from TR to TN1. The inner part of these packets
contains an IPv4/TCP layer. Then, go back to Step 1.

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/TCP” and sends it to TN2. In this new packet the TCP
checksum has to be adjusted.

• Step 2: These Packets must be translated according to the table presented hereafter:

ICMPv4 Packet ICMPv6 Corresponding Packet

Type = 3, Code = 0,1,5,6,7,8,11 or 12 Type = 1, Code = 0 (no route to destination)

Type = 3, Code = 2 (Protocol unreachable error) Type = 4, Code = 1 (unrecognized Next Header type encountered)
and make the Pointer point to the IPv6 Next Header field

Type = 3, Code = 3 (port unreachable) Type = 1, Code = 4 (port unreachable)

Type = 3, Code = 4 (fragmentation needed and DF
set)

Type = 2, Code = 0 (Too Big message) and the The MTU field
needs to be adjusted

Type = 3, Code = 9, 10 (communication with
destination host administratively prohibited)

Type = 1, Code = 1(communication with destination host
administratively prohibited)

Type = 12 (Parameter Problem) Type=4 and the pointer need to be adjusted to point to the
corresponding field in the translated include IP header.

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet the UDP checksum has to be adjusted.

39

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1
IPv6/TCP

---------------------------> 1 TN2

TN1 Step1
IPv4/TCP

---------------------------> TN2

TN1 2
ICMPv4 Error

<--------------------------- TR

TN1
ICMPv6 Error (Some)

<--------------------------- Step2 TN2

40

5.1.3.3 ICMPv4 Error Messages with IPv4 options in payload and header

Purpose:

Check translation of ICMPv4 Error Messages with IPv4 options included in payload and header.

References:

• [RFC2765], Section 3.1, 3.3

• [RFC 2765], Page 15

“….

The translation of the inner IP header can be done by recursively invoking the function that translated the outer
IP headers.”

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

If IPv4 options are present in the IPv4 packet, they are ignored i.e., there is no attempt to translate them.
However, if an unexpired source route option is present then the packet MUST instead be discarded, and an
ICMPv4 "destination unreachable/source route failed" (Type 3/Code 5) error message SHOULD be returned to
the sender.

This test checks the correct translation of ICMPv4 Error Messages with IPv4 Options included in payload and
header. These Packets owes the following options: No Operation, Strict Source Route expired, Timestamp,
Record Route, End of Option List. The inner part of these packets contains an IPv4/UDP layer with the same
options (No Operation, Strict Source Route expired, Timestamp, Record Route, End of Option List). The ICMP
checksum should be adjusted to account for the address change, going from V4 to V6 addresses. The inner IP
header has also to be translated. These Packets must be translated according to the table presented in the
following. Moreover, IPv4 Options MUST be ignored in the Header translation and in the Payload translation.

Packets:

• IPv6/UDP (length: 48 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 8
NextHeader: 17

HopLimit : (64) [Same as in IPv4/UDP]
SourceAddress: TN1 IPv6 Global Address

DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To calculate

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6

41

TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 56)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 4 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Parameter Problem (length: 56)

Type: 4
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• IPv4/UDP(length: 60 bytes)

IPv4 Header (length: 52)

Version: 4
IHL: 13

TypeOfService: (0)
TotalLength: 60

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

 Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

42

NoOperation Option (length:1)
Type: 1

Strict Source Route Option (length:7)
Type: 137
Length: 7
Pointer:8

RouteData: TN2 IPv4 Address

Timestamp Option (length:8)
Type: 68
Length: 8
Pointer:5

Overflow: 0
Flag: 0

Timestamp: 170

NoOperation Option (length:1)
Type: 1

Record Route Option (length:11)
Type: 7

Length: 11
Pointer:4

RouteData: 0.0.0.0
RouteData: 0.0.0.0

EndofOptionList (length:1)
Type: 0

Padding = 000000

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To Calculate

• ICMPv4 Error Type 3 (length: 88 bytes)

IPv4 Header (length: 52)

Version: 4
IHL: 13

TypeOfService: (0)
TotalLength: 88

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Strict Source Route Option (length:7)
Type: 137
Length: 7
Pointer:8

RouteData: TN2 IPv4 Address

43

Timestamp Option (length:8)
Type: 68
Length: 8
Pointer:5

Overflow: 0
Flag: 0

Timestamp: 170

NoOperation Option (length:1)
Type: 1

Record Route Option (length:11)
Type: 7

Length: 11
Pointer:4

RouteData: 0.0.0.0
RouteData: 0.0.0.0

EndofOptionList (length:1)
Type: 0

Padding = 000000

ICMPv4 Destination Unreachable
(length: 36)

Type: 3
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 60)
Data: Same as IPv4/UDP Packet

• ICMPv4 Error Type 12 (length: 88 bytes)

IPv4 Header (length: 52)

Version: 4
IHL: 13

TypeOfService: (0)
TotalLength: 88

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Strict Source Route Option (length:7)
Type: 137
Length: 7
Pointer:8

RouteData: TN2 IPv4 Address

Timestamp Option (length:8)
Type: 68
Length: 8
Pointer:5

Overflow: 0

44

Flag: 0
Timestamp: 170

NoOperation Option (length:1)
Type: 1

Record Route Option (length:11)
Type: 7

Length: 11
Pointer:4

RouteData: 0.0.0.0
RouteData: 0.0.0.0

EndofOptionList (length:1)
Type: 0

Padding = 000000

ICMPv4 Parameter Problem
 (length: 36)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Unused: 0

Payload (length: 60)
Data: Same as IPv4/UDP Packet

Procedure:

1. TN1 sends an IPv6/UDP Packet to TN2

2. Send “ICMPv4 Error Message” described in the following from TR to TN1. The inner part of these packets
contains an IPv4/TCP layer. Moreover, Options (No Operation, Strict Source Route expired, Timestamp,
Record Route, End of Option List) are present in the IPv4 Header and in the ICMPv4 Header of the ICMPv4
Error Packet. Then, go back to Step 1.

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/UDP” and sends it to TN2. In this new packet the UDP
checksum has to be adjusted.

• Step 2: These Packets must be translated according to the table presented hereafter:

ICMPv4 Packet ICMPv6 Corresponding Packet

Type = 3, Code = 0,1,5,6,7,8,11 or 12 Type = 1, Code = 0 (no route to destination)

Type = 3, Code = 2 (Protocol unreachable error) Type = 4, Code = 1 (unrecognized Next Header type encountered)
and make the Pointer point to the IPv6 Next Header field

Type = 3, Code = 3 (port unreachable) Type = 1, Code = 4 (port unreachable)

Type = 3, Code = 4 (fragmentation needed and DF
set)

Type = 2, Code = 0 (Too Big message) and the The MTU field
needs to be adjusted

Type = 3, Code = 9, 10 (communication with
destination host administratively prohibited)

Type = 1, Code = 1(communication with destination host
administratively prohibited)

Type = 12 (Parameter Problem) Type=4 and the pointer need to be adjusted to point to the
corresponding field in the translated include IP header.

45

When Packet are translated, the options present in the IPv4 Header and in the ICMPv4 Header of the ICMPv4 Error
Packet are removed. Moreover, the translation of the inner IP header can be done by recursively invoking the function
that translated the outer IP headers. Thus, in the inner Part of the translated Packet the UDP checksum has to be
adjusted and the IPv4 Options have been removed.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1
IPv6/UDP

---------------------------> 1 TN2

TN1 Step1
IPv4/UDP

---------------------------> TN2

TN1 2
ICMPv4 Error

<--------------------------- TR

TN1
ICMPv6 Error (Some)

<--------------------------- Step2 TN2

46

5.1.4 ICMPv6 Translation
An ICMPv6 Error Packet has sometimes an IPv6 Packet in its payload. In this part we will consider that the translation of
the inner IP header has to be done. Indeed, what is the need to translate an ICMPv6 error message if the inner part is
not also translated?

The ICMPv6 message format is specified by the value of the Type field:

1 Destination unreachable.

2 Packet too big.

3 Time exceeded.

4 Parameter problem.

128 Echo request.

129 Echo reply.

130 Group Membership Query.

131 Group Membership Report.

132 Group Membership Reduction.

133 Router Solicitation.

134 Router Advertisement.

135 Neighbor Solicitation.

136 Neighbor Advertisement.

137 Redirect.

138 Router Renumbering.

139 ICMP Node Information Query.

140 ICMP Node Information Response.

141 Inverse Neighbor Discovery Solicitation Message.

142 Inverse Neighbor Discovery Advertisement Message.

143 Home Agent Address Discovery Request Message.

144 Home Agent Address Discovery Reply Message.

145 Mobile Prefix Solicitation.

146 Mobile Prefix Advertisement.

47

5.1.4.1 ICMPv6 Informational Messages

Purpose:

Check Translation of ICMPv6 Informational Messages. ICMPv6 Informational messages are ICMPv6 messages with a
Type field value between 128 and 255.

References:

• [RFC 2765] Section 4.2

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

This test checks the correct translation of ICMPv6 Informational Messages. The ICMP checksum should be
adjusted to account for the address change, going from V6 to V4 addresses. All ICMPv6 Informational
messages except “ICMPv6 Echo Request” and “ICMPv6 Echo Reply” MUST be silently dropped.

Packets:

• ICMPv6 Echo Request (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Echo Request (length: 16)

Type: 128
Code: 5

Checksum: To calculate
Identifier: (512)

SequenceNumber: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Echo Reply (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 58

HopLimit : (63) [one less than in the ICMPv4 Echo Reply]
SourceAddress: TN1 IPv6 Global Address

DestinationAddress: TN2 IPv6 Global NAT-PT Address

48

ICMPv6 Echo Reply (length: 16)

Type: 129
Code: 5

Checksum: To calculate
Identifier: (512) [one less than in the ICMPv6 Echo Request]

 SequenceNumber: (0) [one less than in the ICMPv6 Echo
Request]

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 MLD Query (length: 64 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 24
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 MLD Query (length: 24)

Type: 130
Code: 0

Checksum: To Calculate
MaxResponseDelay: 30

Reserved: 0
MulticastAddress: 0 [General Query]

• ICMPv6 MLD Done (length: 64 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 24
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 MLD Done (length: 24)

Type: 132
Code: 0

Checksum: To Calculate
MaxResponseDelay: 0

Reserved: 0
MulticastAddress: ff0E::1:FF00:0000

• ICMPv6 MLD Report (length: 64 bytes)

IPv6 Header (length: 40)

Version: 6

49

TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 24
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 MLD Report (length: 24)

Type: 131
Code: 0

Checksum: To Calculate
MaxResponseDelay: 0

Reserved: 0
MulticastAddress: ff0E::1:FF00:0000

• ICMPv6 Router Advertisement (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Router Advertisement (length: 16)

Type: 134
Code: 0

Checksum: To Calculate
CurHopLimit: 0

Mflag: 0
Oflag: 0
Hflag: 0

Preference: 0
Reserved: 0

LifeTime: 1800 seconds
ReachableTime: 0
RetransTimer: 0

• ICMPv6 Router Solicitation (length: 48 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 8
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Router Solicitation (length: 8)

Type: 133
Code: 0

50

Checksum: To Calculate
Reserved: 0

• ICMPv6 Neighbor Solicitation (length: 72 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 32
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Neighbor Solicitation (length: 32)

Type: 135
Code: 0

Checksum: To Calculate
Reserved: 0

TargetAddress: TN2 IPv6 Global NAT-PT Address

Option ICMPv6 Source Link Layer (length:8)

Type: 1
Length: 1

LinkLayerAddress: TN1 MAC Address

• ICMPv6 Neighbor Advertisement (length: 72 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 32
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Neighbor Advertisement (length: 32)

Type: 136
Code: 0

Checksum: To Calculate
Rflag: 0
Sflag: 0
Oflag: 0

Reserved: 0
TargetAddress: TN1 IPv6 Global Address

Option ICMPv6 Target Link Layer (length:8)

Type: 2
Length: 1

LinkLayerAddress: TN1 MAC Address

• ICMPv6 Redirect (length: 80 bytes)

51

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 40
NextHeader: 58
HopLimit : 255

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Redirect (length: 40)

Type: 137
Code: 0

Checksum: To Calculate
Reserved: 0

TargetAddress: TN1 IPv6 Global Address
DestinationAddress: TN1Bis IPv6 Global Address

• ICMPv6 Unknown Informational Message (length: 44 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 4
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 ANY (length: 4)

Type: TYPE
Code: CODE

Checksum: To Calculate
Data: NONE

• ICMPv4 Echo Reply (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

 Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Echo Reply (length: 16)

52

Type: 0
Code: 5

Checksum: To Calculate
Identifier: (512) [Same as in the ICMPv6 Echo Request]

SequenceNumber: (0) [Same as in the ICMPv6 Echo
Request]

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Echo Request (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the ICMPv6 Echo Request]

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Echo Request (length: 16)

Type: 8
Code: 5

Checksum: To Calculate
Identifier: (512) [Same as in the ICMPv6 Echo Request]

SequenceNumber: (0) [Same as in the ICMPv6 Echo
Request]

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

1. TN1 sends an “ICMPv6 Echo Request” to TN2.

2. TR Forwards an “ICMPv4 Echo Reply” from TN2 to TN1.

3. TN1 sends the following packets to TN2:

- “ICMPv6 MLD Query Message”

- “ICMPv6 MLD Done Message”

- “ICMPv6 MLD Report Message”

- “ICMPv6 Router Advertisement Message”

- “ICMPv6 Router Solicitation Message”

- “ICMPv6 Neighbor Advertisement Message”

- “ICMPv6 redirect Message”

- Some “ICMPv6 Unknown Informational Message” with different values “TYPE” and “CODE” for the type
and code field (type = 255,code = 0; type = 0, code = 0 …)

Observable Results:

• Step 1: The NUT translates this packet in “ICMPv4 Echo Request” and sends it to TN2. In this new packet the
ICMP checksum has to be adjusted.

53

• Step 2: The NUT translates this packet in “ICMPv6 Echo Reply” and sends it to TN1. In this new packet the
ICMP checksum has to be adjusted.

• Step 3: These Packets must be silently dropped except for the cases indicated in the table presented hereafter:

ICMPv6 Packet ICMPv4 Corresponding Packet
Type = 128 (Echo Request) Type = 0 (Echo Request)
Type = 129 (Echo Reply) Type = 8 (Echo Reply)

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1
ICMPv6 Echo request

---------------------------> 1 TN2

 Step1
ICMPv4 Echo Request

---------------------------> TN2

TN1 2
ICMPv4 Echo Reply

<--------------------------- TN2

TN1
ICMPv6 Echo Reply

<--------------------------- Step2

TN1

• ICMPv6 MLD Query

• ICMPv6 MLD Done

• ICMPv6 MLD Report

• ICMPv6 Router Advertisement

• ICMPv6 Router Solicitation

• ICMPv6 Neighbor Advertisement

• ICMPv6 redirect

• Some “ICMPv6 Unknown
Informational Message” with
different values “TYPE” and “CODE”
for the type and code field (type =
255,code = 0; type = 0, code = 0 …)

---------------------------> 3 TN2

54

5.1.4.2 ICMPv6 Error Messages with UDP packet in payload

Purpose:

Check Translation of ICMPv6 Error Messages when a UDP packet is included in payload. ICMPv6 error messages are
ICMPv6 messages with a type field between 0 and 254.

References:

• [RFC2765] Section 4.2, 4.3

• [RFC 2765] Page 15 :

“….

The translation of the inner IP header can be done by recursively invoking the function that translated the outer
IP headers.”

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

This test checks the correct translation of ICMPv6 Error Messages with a UDP packet included in payload. The
ICMP checksum should be adjusted to account for the address change, going from V6 to V4 addresses. The
inner IP header has also to be translated.

Packets:

• IPv6/UDP (length: 48 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 8
NextHeader: 17
HopLimit : (64)

SourceAddress: TN2 IPv6 Global NAT-PT Address or TN3
IPv6 Global Address

DestinationAddress: TN3 IPv6 Global Address or TN2 IPv6
Global NAT-PT Address

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To Calculate

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58
HopLimit : (64)

55

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 56)

Type: TYPE
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 3 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Time Exceeded (length: 56)

Type: 3
Code: CODE

Checksum: To Calculate
MTU: (1280)
Unused: 0

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 4 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Parameter Problem (length: 56)

Type: 4
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Payload (length: 48)
Data: Same as IPv6/UDP Packet

56

• ICMPv6 Unknown Error Message (length: 44 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 4
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 ANY (length: 4)

Type: TYPE
Code: CODE

Checksum: To Calculate
Data: NONE

• IPv4/UDP(length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 28

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64) [Same as in IPv6/UDP]

Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN2 IPv4 Address or TN3 IPv4 Address
given by The NUT

DestinationAddress: TN3 IPv4 Address given by The NUT or
TN2 IPv4 Address

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To Calculate

• ICMPv4 Error Type 3 / ICMPv4 Error Type 11 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

57

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Destination Unreachable / ICMPv4 Time Exceeded
(length: 16)

Type: TYPE
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 8)
Data: First 8 bytes of IPv4/UDP Packet

• ICMPv4 Error Type 12 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Parameter Problem (length: 16)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Payload (length: 8)
Data: First 8 bytes of IPv4/UDP Packet

Procedure:

1. TN1 sends an “IPv6/UDP” Packet from TN3 to TN2. The source address is TN3 IPv6 Global Address and the
destination address is TN2 IPv6 Global NAT-PT Address.

2. TN2 replies with an “IPv4/UDP” Packet to TN3. The source address is TN2 IPv4 Address and the destination
address is TN3 IPv4 Address given by The NUT.

3. Send “ICMPv6 Error Message” from TN1 to TN2 incrementing type and code. The inner part of these packets
contains an IPv6/UDP layer. The source address of the inner “IPv6/UDP” packet is TN2 IPv6 Global NAT-PT
Address and the destination address is TN3 IPv6 Global Address. Then, go back to Step 1.

Observable Results:

• Step 1: The NUT must translate this packet in “IPv4/UDP” and forward it to TN2. The source address is TN3
IPv4 Address given by The NUT and the destination address is TN2 IPv4 Address.

• Step 2: The NUT must translate this packet in “IPv6/UDP” and forward it to TN1. The source address is TN2
IPv6 Global NAT-PT Address and the destination address is TN3 IPv6 Global Address.

58

• Step 3: These Packets must be silently dropped except for the cases indicated in the table presented hereafter.
The source address of the inner “IPv4/UDP” packet is TN2 IPv4 Address and the destination address is TN3
IPv4 Address given by The NUT.

ICMPv6 Packet ICMPv4 Corresponding Packet

Type = 1, Code = 0 (no route to destination) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 1 (communication with destination
administratively prohibited)

Type = 3, Code = 10 (communication with destination host
administratively prohibited)

Type = 1, Code = 2 (beyond scope of source address) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 3 (address unreachable) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 4 (port unreachable) Type = 3, Code = 3 (port unreachable)

Type = 2 (Packet Too Big) Type = 3, Code = 4 And ajust the MTU Field

Type = 3 (Time Exceeded) Type = 11, Code = unchanged

Type = 4, Code = 1 Type = 3, Code = 2 (protocol unreachable)

Type = 4, Code <> 1 Type = 12, Code = 0 and Update the Pointer

(if Pointer was 0 -> 0

if Pointer was 4 -> 2

if Pointer was 6 -> 9

if Pointer was 7 -> 8

if Pointer was 8 -> 12

if Pointer was 24 -> 16)

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet the UDP checksum has to be adjusted.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN3(Send
from TN1)

IPv6/UDP
--------------------------> 1 TN2

 Step1
IPv4/UDP

---------------------------> TN2

TN3 2
IPv4/UDP

<--------------------------- TN2

TN3 (Send
to TN1)

IPv6/UDP
<-------------------------- Step2

TN1
ICMPv6 Error

--------------------------> 3 TN2

 Step3
ICMPv4 Error (Some)

---------------------------> TN2

59

5.1.4.3 ICMPv6 Error Messages with TCP packet in payload

Purpose:

Check Translation of ICMPv6 Error Messages when a TCP packet is included in payload. ICMPv6 error messages are
ICMPv6 messages with a type field between 0 and 254.

References:

• [RFC2766] Section 5.3

• [RFC2765] Page 21

“ …

ICMPv6 error messages:

 Destination Unreachable (Type 1)

 Set the Type field to 3. Translate the code field as follows:

 Code 0 (no route to destination): Set Code to 1 (host unreachable).”

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

This test checks the correct translation of ICMPv6 Error Messages with a TCP packet included in payload. The
ICMP checksum should be adjusted to account for the address change, going from V6 to V4 addresses. The
inner IP header has also to be translated.

Packets:

• IPv6/TCP (length: 68 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 28
NextHeader: 6
HopLimit : (64)

SourceAddress: TN2 IPv6 Global NAT-PT Address or TN3
IPv6 Global Address

DestinationAddress: TN3 IPv6 Global Address or TN2 IPv6
Global NAT-PT Address

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: S/N
AcknowledgmentNumber: A/N

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFlag
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFlag
FINFlag: FINFlag

Window: (0)
Checksum: To calculate

60

UrgentPointer: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (length: 116 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 76)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 68)
Data: Same as IPv6/TCP Packet

• ICMPv6 Error Type 3 (length: 116 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Time Exceeded (length: 76)

Type: 3
Code: CODE

Checksum: To calculate
MTU: (1280)
Unused: 0

Payload (length: 68)
Data: Same as IPv6/TCP Packet

• ICMPv6 Error Type 4 (length: 116 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76

61

NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Parameter Problem (length: 76)

Type: 3
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 48)
Data: Same as IPv6/TCP Packet

• IPv4/TCP (length: 48 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 48

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64) [same as in IPv6/TCP]

Protocol: 6
HeaderChecksum: To calculate

SourceAddress: TN2 IPv4 Address or TN3 IPv4 Address
given by The NUT

DestinationAddress: TN3 IPv4 Address given by The NUT or
TN2 IPv4 Address

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: S/N
AcknowledgmentNumber: A/N

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFlag
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFlag
FINFlag: FINFlag

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Error Type 3 / ICMPv4 Error Type 11 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4

62

IHL: 5
TypeOfService: (0)

TotalLength: 36
Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Destination Unreachable / ICMPv4 Time Exceeded
(length: 16)

Type: TYPE
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 8)
Data: First 8 bytes of IPv4/TCP Packet

• ICMPv4 Error Type 12 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Parameter Problem (length: 16)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Payload (length: 8)
Data: First 8 bytes of IPv4/TCP Packet

Procedure:

1. TN1 sends an “IPv6/TCP” Packet from TN3 to TN2. The source address is TN3 IPv6 Global Address and the
destination address is TN2 IPv6 Global NAT-PT Address. (SYNFlag is set, S/N is set to 1 and A/N is set to 0)

2. TN2 replies with an “IPv4/TCP” Packet to TN3. The source address is TN2 IPv4 Address and the destination
address is TN3 IPv4 Address given by The NUT. (SYNFlag and ACKFlag are set, S/N is set to 10 and A/N
is set to 2)

3. Send “ICMPv6 Error Message” from TN1 to TN2 incrementing type and code. The inner part of these packets
contains an IPv6/TCP layer. The source address of the inner “IPv6/TCP” packet is TN2 IPv6 Global NAT-PT
Address and the destination address is TN3 IPv6 Global Address. Then, go back to Step 1.

63

Observable Results:

• Step 1: The NUT must translate this packet in “IPv4/TCP” and forward it to TN2. The source address is TN3
IPv4 Address given by The NUT and the destination address is TN2 IPv4 Address.

• Step 2: The NUT must translate this packet in “IPv6/TCP” and forward it to TN1. The source address is TN2
IPv6 Global NAT-PT Address and the destination address is TN3 IPv6 Global Address.

• Step 3: These Packets must be translated according to the table presented hereafter. The source address of
the inner “IPv4/TCP” packet is TN2 IPv4 Address and the destination address is TN3 IPv4 Address given by
The NUT.

ICMPv6 Packet ICMPv4 Corresponding Packet

Type = 1, Code = 0 (no route to destination) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 1 (communication with destination
administratively prohibited)

Type = 3, Code = 10 (communication with destination host
administratively prohibited)

Type = 1, Code = 2 (beyond scope of source address) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 3 (address unreachable) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 4 (port unreachable) Type = 3, Code = 3 (port unreachable)

Type = 2 (Packet Too Big) Type = 3, Code = 4 And ajust the MTU Field

Type = 3 (Time Exceeded) Type = 11, Code = unchanged

Type = 4, Code = 1 Type = 3, Code = 2 (protocol unreachable)

Type = 4, Code <> 1 Type = 12, Code = 0 and Update the Pointer

(if Pointer was 0 -> 0

if Pointer was 4 -> 2

if Pointer was 6 -> 9

if Pointer was 7 -> 8

if Pointer was 8 -> 12

if Pointer was 24 -> 16)

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet, the TCP checksum has to be adjusted.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN3(Send
from TN1)

IPv6/TCP
--------------------------> 1 TN2

 Step1
IPv4/TCP

---------------------------> TN2

TN3 2
IPv4/TCP

<--------------------------- TN2

TN3 (Send
to TN1)

IPv6/TCP
<-------------------------- Step2

TN1
ICMPv6 Error

--------------------------> 3 TN2

 Step3
ICMPv4 Error (Some)

---------------------------> TN2

64

5.1.4.4 ICMPv6 Error Messages with IPv6 options in payload and header

Purpose:

Check Translation of ICMPv6 Error Messages with IPv6 options included in payload and header. ICMPv6 error
messages are ICMPv6 messages with a type field between 0 and 254.

References:

• [RFC2765] Section 4.2, 4.3

• [RFC 2765] Page 15

“….

The translation of the inner IP header can be done by recursively invoking the function that translated the outer
IP headers.”

• [RFC 2765] Section 4.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

This test checks the correct translation of ICMPv6 Error Messages with IPv6 Options included in payload and
header. These Packets owes the following extension headers: Hop by Hop Extension, Destination Option
Header, Routing Header Type 0 with Segments Left = 0, Destination Option Header. The inner part of these
known packets contains an IPv6/UDP layer with the same options (Hop by Hop Extension, Destination Option
Header, Routing Header Type 0 with Segments Left = 0, Destination Option Header). The ICMP checksum
should be adjusted to account for the address change, going from V6 to V4 addresses. The inner IP header has
also to be translated. These Packets must be translated according to the table presented in the following.
Moreover, IPv6 Options MUST be ignored in the Header translation and in the Payload translation.

Packets:

• IPv6/UDP (with Hop by Hop Extension, Destination Option Header, Routing Header Type 0 with Segments Left
= 0, Destination Option Header) (length: 88 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 48
NextHeader: 0
HopLimit : (64)

SourceAddress: TN2 IPv6 Global NAT-PT Address or TN3
IPv6 Global Address

DestinationAddress: TN3 IPv6 Global Address or TN2 IPv6
Global NAT-PT Address

Hop by Hop Option Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Destination Option Header (length: 8)

65

NextHeader = 43
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Routing Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

Destination Option Header (length: 8)

NextHeader = 17
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (with Hop by Hop Extension, Destination Option Header, Routing
Header Type 0 with Segments Left = 0, Destination Option Header) (length: 168 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 128
NextHeader: 0
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Hop by Hop Option Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Destination Option Header (length: 8)

66

NextHeader = 43
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Routing Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

Destination Option Header (length: 8)

NextHeader = 58
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 96)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 88)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 3 (with Hop by Hop Extension, Destination Option Header, Routing Header Type 0 with
Segments Left = 0, Destination Option Header) (length: 168 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 128
NextHeader: 0
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Hop by Hop Option Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Destination Option Header (length: 8)

67

NextHeader = 43
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Routing Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

Destination Option Header (length: 8)

NextHeader = 58
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

ICMPv6 Time Exceeded (length: 96)

Type: 3
Code: CODE

Checksum: To calculate
MTU: (1280)
Unused: 0

Payload (length: 88)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 4 (with Hop by Hop Extension, Destination Option Header, Routing Header Type 0 with
Segments Left = 0, Destination Option Header) (length: 168 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 128
NextHeader: 0
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Hop by Hop Option Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Destination Option Header (length: 8)

68

NextHeader = 43
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Routing Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

Destination Option Header (length: 8)

NextHeader = 58
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

ICMPv6 Parameter Problem (length: 96)

Type: 3
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 88)
Data: Same as IPv6/UDP Packet

• IPv4/UDP(length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 28

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64) [Same as in IPv6/UDP]

Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN2 IPv4 Address or TN3 IPv4 Address
given by The NUT

DestinationAddress: TN3 IPv4 Address given by The NUT or
TN2 IPv4 Address

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To Calculate

69

• ICMPv4 Error Type 3 / ICMPv4 Error Type 11 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Destination Unreachable / ICMPv4 Time Exceeded
(length: 16)

Type: TYPE
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 8)
Data: First 8 bytes of IPv4/UDP Packet

• ICMPv4 Error Type 12 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Parameter Problem (length: 16)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Payload (length: 8)
Data: First 8 bytes of IPv4/UDP Packet

Procedure:

1. TN1 sends an “IPv6/UDP” Packet from TN3 to TN2. The source address is TN3 IPv6 Global Address and
the destination address is TN2 IPv6 Global NAT-PT Address.

70

2. TN2 replies with an “IPv4/UDP” Packet to TN3. The source address is TN2 IPv4 Address and the
destination address is TN3 IPv4 Address given by The NUT.

3. Send “ICMPv6 Error Message” described in the following from TN1 to TN2. These Packets owes the
following extension headers: Hop by Hop Extension, Destination Option Header, Routing Header Type 0
with Segments Left = 0, Destination Option Header. The inner part of these known packets contains an
IPv6/UDP layer with the same options (Hop by Hop Extension, Destination Option Header, Routing Header
Type 0 with Segments Left = 0, Destination Option Header). The source address of the inner “IPv6/UDP”
packet is TN2 IPv6 Global NAT-PT Address and the destination address is TN3 IPv6 Global Address. Then,
go back to Step 1.

Observable Results:

• Step 1: The NUT must translate this packet in “IPv4/UDP” and forward it to TN2. The source address is TN3
IPv4 Address given by The NUT and the destination address is TN2 IPv4 Address.

• Step 2: The NUT must translate this packet in “IPv6/UDP” and forward it to TN1. The source address is TN2
IPv6 Global NAT-PT Address and the destination address is TN3 IPv6 Global Address.

• Step 3: These Packets must be translated according to the table presented hereafter. Moreover, IPv6 Options
MUST be ignored in the Header translation and in the Payload translation. The source address of the inner
“IPv4/UDP” packet is TN2 IPv4 Address and the destination address is TN3 IPv4 Address given by The NUT.

ICMPv6 Packet ICMPv4 Corresponding Packet

Type = 1, Code = 0 (no route to destination) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 1 (communication with destination
administratively prohibited)

Type = 3, Code = 10 (communication with destination host
administratively prohibited)

Type = 1, Code = 2 (beyond scope of source address) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 3 (address unreachable) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 4 (port unreachable) Type = 3, Code = 3 (port unreachable)

Type = 2 (Packet Too Big) Type = 3, Code = 4 And ajust the MTU Field

Type = 3 (Time Exceeded) Type = 11, Code = unchanged

Type = 4, Code = 1 Type = 3, Code = 2 (protocol unreachable)

Type = 4, Code <> 1 Type = 12, Code = 0 and Update the Pointer

(if Pointer was 0 -> 0

if Pointer was 4 -> 2

if Pointer was 6 -> 9

if Pointer was 7 -> 8

if Pointer was 8 -> 12

if Pointer was 24 -> 16)

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet, the TCP checksum has to be adjusted.

71

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN3(Send
from TN1)

IPv6/UDP
--------------------------> 1 TN2

 Step1
IPv4/UDP

---------------------------> TN2

TN3 2
IPv4/UDP

<--------------------------- TN2

TN3 (Send
to TN1)

IPv6/UDP
<-------------------------- Step2

TN1
ICMPv6 Error

--------------------------> 3 TN2

 Step3
ICMPv4 Error (Some)

---------------------------> TN2

72

5.1.5 ICMPv6 Error Generation

5.1.5.1 HOP Limit set to 0 or 1 & ICMPv6 Time Exceeded Message

Purpose:

Check that the NUT discards packets it receives with HOP Limit set to 0 or 1.

References:

• [RFC2765] Section 4.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

This test checks that packet is correctly discarded when HOP Limit is set to 0 or 1. Moreover, the NUT
SHOULD send an ICMPv6 "Time Exceeded" error.

Packets:

• IPv6/UDP with Hop Limit = 0 or 1(length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 17
HopLimit: 0 or 1

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Time Exceeded Code 0 (length: 104 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: 0
FlowLabel: 0

PayloadLength: 64
NextHeader: 58

HopLimit : XXXXX
SourceAddress: NUT IPv6 Global Address or NUT Link-local

IPv6 Address Link1
DestinationAddress: TN1 IPv6 Global Address

73

ICMPv6 Time Exceeded (length: 64)

Type: 3
Code: 0

Checksum: To Calculate
Unused: 0

Payload (length: 56)
Data: the corresponding IPv6/UDP Packet

Procedure:

1. TN1 sends an “IPv6/UDP” with Hop Limit set to 0 to TN2

2. TN1 sends an “IPv6/UDP” with Hop Limit set to 1 to TN2

Observable Results:

• Step 1: NAT-PT MUST drop this Packet and SHOULD send an “ICMPv6 Time Exceeded Code 0” Packet to
TN1. The offending packet included in the “ICMPv6 Time Exceeded Code 0” should be the one which causes
the error (ie the “ICMPv6 Echo Request” with Hop Limit set to 0).

• Step 2: NAT-PT MUST drop this Packet and SHOULD send an “ICMPv6 Time Exceeded Code 0” Packet to
TN1. The offending packet included in the “ICMPv6 Time Exceeded Code 0” should be the one which causes
the error (ie the “ICMPv6 Echo Request” with Hop Limit set to 1 or 0).

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1
IPv6/UDP With HOP LIMIT == 0

--------------------------> 1 TN2

TN1
ICMPv6 Time Exceeded

<-------------------------- Step1

TN1
IPv6/UDP With HOP LIMIT == 1

--------------------------> 2 TN2

TN1
ICMPv6 Time Exceeded

<-------------------------- Step2

Possible Problem:

Possible problems can appear in this test case. The “ICMPv6 Time Exceeded Code 0” packet may not match the
waited packet. The “ICMPv6 Time Exceeded Code 0” packet does not contain the full IPv6/UDP packet. According
to [RFC2463], when processing ICMPv6 messages, Implementations MUST observe the following rule: every
ICMPv6 error message (type < 128) MUST includes as much of the IPv6 offending (invoking) packet (the packet
that caused the error) as will fit without making the error message packet exceed the minimum IPv6 MTU. However,
with the full IPv6/UDP packet, the length of ICMPv6 Time Exceeded Code 0 part is 104 bytes which is less than the
minimum IPv6 MTU 1280 bytes.

74

5.1.6 MTU Handling & Fragmentation

5.1.6.1 Translation of Fragmented packets

Purpose:

Check that Fragmented IPv6/UDP Packets are correctly translated. In particular, check that the UDP checksum is well
adjusted.

References:

• [RFC2765] Section 4.1, 4.2

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

Check the correct translation of IPv6 fragmented packets. In particular, check the following IPv4 field:

• Total Length: Payload length value from IPv6 header, minus 8 for the Fragment header, plus the size of the
IPv4 header.

• Identification: Copied from the low-order 16-bits in the Identification field in the Fragment header.

• Flags: The More Fragments flag is copied from the M flag in the Fragment header. The Don't Fragments flag is
set to zero allowing this packet to be fragmented by IPv4 routers.

• Fragment Offset: Copied from the Fragment Offset field in the Fragment Header.

• Protocol: Next Header value copied from Fragment header.”

Packets:

• IPv6/UDP (1st Fragment) (length: 64 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 24
NextHeader: 44
HopLimit : (64)

SourceAddress: TN1 Global IPv6 Address
DestinationAddress: TN2 Global IPv6 NAT-PT Address

Fragment Header (length:8)

NextHeader: 17
Reserved1: 0

FragmentOffset: 0
Reserved2: 0

Mflag: 1
Identification: (0xFFEFFF01)

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

75

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv6/UDP (2nd Fragment) (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 44
HopLimit : (64)

SourceAddress: TN1 Global IPv6 Address
DestinationAddress: TN2 Global IPv6 NAT-PT Address

Fragment Header (length:8)

NextHeader: 17
Reserved1: 0

FragmentOffset: 2 (in 8-octet units)
Reserved2: 0

Mflag: 0
Identification: (0xFFEFFF01)

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv6/UDP (Unique Fragment) (length: 64 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 24
NextHeader: 44
HopLimit : (64)

SourceAddress: TN1 Global IPv6 Address
DestinationAddress: TN2 Global IPv6 NAT-PT Address

Fragment Header (length:8)

NextHeader: 17
Reserved1: 0

FragmentOffset: 0
Reserved2: 0

Mflag: 0
Identification: (0xFFEFFF02)

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

76

• IPv4/UDP (1st Fragment) (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: (0xFF01) [low-order 16-bit of the Identification field in
the Fragment Header of IPv6/UDP (1st Fragment)]

Reserved: 0
DF: 0
MF: 1

FragmentOffset: 0
TTL: (63) [one less than in the correponding IPv6/UDP (1st

Fragment) Packet]

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP (2nd Fragment) (length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 28

Identifier: (0xFF01) [low-order 16-bit of the Identification field in
the Fragment Header of IPv6/UDP (2nd Fragment)]

Reserved: 0
DF: 0
MF: 0

FragmentOffset: 2 (in 8-octet units)
TTL: (63) [one less than in the correponding IPv6/UDP (2nd

Fragment) Packet]
Protocol: 17

HeaderChecksum: To calculate
 SourceAddress: TN1 IPv4 Address given by The NUT

DestinationAddress: TN2 IPv4 Address

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP (Unique Fragment) (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)

77

TotalLength: 36
Identifier: (0xFF02) [low-order 16-bit of the Identification field in
the Fragment Header of IPv6/UDP (Unique Fragment)]

Reserved: 0
DF: 0
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the correponding IPv6/UDP

(Unique Fragment) Packet]
Protocol: 17

HeaderChecksum: To calculate
 SourceAddress: TN1 IPv4 Address given by The NUT

DestinationAddress: TN2 IPv4 Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

1. TN1 sends an “IPv6/UDP (1st Fragment)” to TN2.

2. TN1 sends an “IPv6/UDP (2nd Fragment)” to TN2.

3. TN1 sends an “IPv6/UDP (Unique Fragment)” to TN2.

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/UDP (1st Fragment)” and sends it to TN2. In this new packet
the UDP checksum has to be adjusted.

• Step 2: The NUT translates this packet in “IPv4/UDP (2nd Fragment)” and sends it to TN2. In this new packet
the UDP checksum has to be adjusted.

• Step 3: The NUT translates this packet in “IPv4/UDP (Unique Fragment)” and sends it to TN2. In this new
packet the UDP checksum has to be adjusted.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1
IPv6/UDP (1st Fragment)

--------------------------> 1 TN2

Step1
IPv4/UDP (1st Fragment)

--------------------------> TN2

TN1
IPv6/UDP (2nd Fragment)

--------------------------> 2 TN2

Step2
IPv4/UDP (2nd Fragment)

--------------------------> TN2

TN1
IPv6/UDP (Unique Fragment)

--------------------------> 3 TN2

Step3
IPv4/UDP (Unique Fragment)

--------------------------> TN2

78

5.1.6.2 Fragmentation at IPv4 Level (**)

Purpose:

Check that IPv6 Packets of 1280 bytes are translated even when the IPv4 MTU on NUT is below 1280 bytes. In this
case the resulting packet has to be fragmented. In this test, The IPv4 MTU on the NUT has to be set to 80 Bytes.
Because NAT-PT is not required to handle PATH MTU Discovery, this test MUST be skipped if the NUT cannot modify
this value.

References:

• [RFC2765] Section 3.5

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• The IPv4 MTU on NUT has to be set to 80 Bytes

Discussion:

The IPv4 MTU on NUT has to be set to 80. Because NAT-PT is not required to handle PATH MTU Discovery,
this test MUST be skipped if the NUT cannot modify this value.

Because the Minimum IPv6 link MTU is 1280 bytes, It means that IPv6 Packets of 1280 bytes has to be
fragmented at the IPv4 Level before to be forwarded by the NUT on the IPv4 Link.

Packets:

• IPv6/UDP (length: 1280 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 1240
NextHeader: 17
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 1240)

SourcePort: (1000)
DestinationPort: (1000)

Length: 1240
Checksum: To calculate

Payload (length: 1232)
Data: 1232 Bytes of data

• IPv4/UDP 1 Fragmented (1st Fragment) (length: 76 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 76

Identifier: XXXXX
Reserved: 0

DF: 0
MF: 1

79

FragmentOffset: 0
TTL: (63) [one less than in the IPv6/UDP Packet]

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

UDP (length: 56)

SourcePort: (1000)
DestinationPort: (1000)

Length: 1232
Checksum: To calculate

Payload (length: 48)
Data: The 48 first bytes of the IPv6/UDP Packet

• IPv4/UDP 2 Fragmented (length: 76 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 76

Identifier: XXXXX [Same as IPv4/UDP 1 Fragmented)]
Reserved: 0

DF: 0
MF: 1

FragmentOffset: FRAGMENT_OFFSET (in 8-octet units)
TTL: (63)

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

Payload (length: 56)
Data: The corresponding 56 bytes of the IPv6/UDP Packet

• IPv4/UDP 3 Fragmented (Last Fragment) (length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 60

Identifier: XXXXX [Same as IPv4/UDP 1 Fragmented)]
Reserved: 0

DF: 0
MF: 0

FragmentOffset: 154 (in 8-octet units)
TTL: (63) [one less than in the IPv6/UDP Packet]

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

Payload (length: 8)
Data: The last 8 bytes of the IPv6/UDP Packet

Procedure:

80

0. Set NUT's IPv4 MTU to 80

1. TN1 sends “IPv6/UDP” to TN2 (Packet size is 1280 bytes).

Observable Results:

• Step 1: The NUT fragmentes this packet in 23 IPv4/UDP and sends it to TN2. In each Fragment, the
FragmentOffset value (FRAGMENT_OFFSET) is a multiple of 7. In the First Fragment it is 0 and it is 154 in the
last Fragment.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4 MTU = 80]
(Forwarded by TR)

Tester(IPv6)

TN1
IPv6/UDP (1280 Bytes)

--------------------------> 1 TN2

Step1
IPv4/UDP (23 Fragments)

--------------------------> TN2

81

5.1.7 FTP-ALG

The use of IP addresses and TCP Ports in FTP Packets with commands such as EPRT, EPSV, involve the need of
having an FTP-ALG located on the NUT to facilitate transparent FTP between v6 and v4 nodes. This part give some
conformance tests to check the correct translation of FTP packets from a v6 (TN1) to a v4 (TN2) node.

Each test will begin with the establishment of a passive TCP connection to the FTP server TN2 using port 21.

This is not really mandatory but because each packet going outside the v6 network has to go through the NUT, this can
lead to some problems. Indeed the NUT can keep the status of live TCP connection and by this way, rejects all TCP
packets when no state is available in the router. As a consequence, each test will have to end with the closing of this
TCP connection.

5.1.7.1 EPRT

Purpose:

Check the correct translation of EPRT command

References:

• [RFC2766] Section 6.2

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A FTP-ALG MUST be available on the NUT

Test Requirement:

NONE

Discussion:

According to [RFC2766], it is recommended to have support for [RFC2428]. It involves that all v4 EPRT
packets send from TN1 have to be translated into v6 EPRT packets. If the FTP application has not been
upgraded to support EPRT and EPSV extensions to allow access to v4, the EPRT packet has to be translated
into a PORT command.

Packets:

• IPv4/TCP/FTP EPRT (length: 71 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 71

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

TCP (length: 20)

SourcePort: (39426)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

82

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

FTP – Command EPRT (length: 31)

Request: TN1_FTP_EPRT_v4

• IPv4/TCP/FTP PORT (length: 67 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 67

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

TCP (length: 20)

SourcePort: (39426)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

FTP – PORT Command (length: 27)

Request: TN1_FTP_PORT_v4

• IPv6/TCP/FTP EPRT(length: 111 bytes)

IPv6 Header (length: 40)

Version: 6

83

TrafficClass: (0)
FlowLabel: 0

PayloadLength: 71
NextHeader: 6

HopLimit : (63) [one less than in the IPv4/TCP/FTP EPRT]
SourceAddress: TN1 IPv6 Global Address

DestinationAddress: TN2 IPv6 Global NAT-PT Address

TCP (length: 20)

SourcePort: (39426)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

FTP – command EPRT (length: 51)

Request: TN1_FTP_EPRT_v6

TN1_FTP_EPRT_v6 : The EPRT command allows for the specification of an extended address for the data
connection. The extended address MUST consist of the network protocol as well as the network and transport
addresses. The syntax is “EPRT<space><d><net-prt><d><net-addr><d><tcp-port><d>” where:

• <d> is a delimiter character (the character "|" is recommended).

• <net-prt> is the protocol (value is 2 for IPv6)

• <net-addr> is TN1 IPv6 Global NAT-PT Address

• <tcp-port> is 39427

In our specific case we have “EPRT |2|3ffe:501:ffff:100:200:ff:fe00:a1a1|39427|”.

TN1_FTP_EPRT_v4 : The syntax is similar to the previous one except that:

• <net-prt> is the protocol IPv4 (value is 1 for IPv4)

• <net-addr> is TN1 IPv4 Address

In our specific case we have “EPRT |1|131.254.199.90|39427|”.

TN1_FTP_PORT_v4 : The syntax is “PORT<space>a1,a2,a3,a4,p1,p2”. It Specifies the host TN1 and port to
which the server should connect for the next file transfer. This is interpreted as IP address a1.a2.a3.a4, port
p1*256+p2. In our specific case we have “PORT 131,254,199,90,154,3”.

Procedure:

1. Establish a TCP connection from TN1 port 39426 to TN2 port 21 as defined in 5.1.2.1.

2. TN1 sends “IPv6/FTP/TCP EPRT” packet to TN2

3. Establish a TCP connection from TN2 port 20 to TN1 port 39427 as defined in 5.3.3.2

4. Close the TCP connection from TN2 port 20 to TN1 port 39427 as defined in 5.3.3.2

5. Close the TCP connection from TN1 port 39426 to TN2 port 21 as defined in 5.1.2.1

Observable Results:

84

• Step 2: The FTP-ALG on the NUT translates the packet in an “IPv4/TCP/FTP EPRT” packet before to forward
it to TN2. If the FTP application has not been upgraded to support EPRT and EPSV extensions to allow access
to v4, the NUT has to translate the packet in an “IPv4/TCP/FTP PORT” packet before to forward it to TN2.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

1: Establishement of a TCP connection from TN1 port 39426 to TN2 port 21

TN1
IPv6/FTP/TCP EPRT

---------------------------> 2 TN2

TN1 Step2
IPv4/FTP/TCP EPRT

--------------------------->
OR

IPv4/FTP/TCP PORT
--------------------------->

TN2

TN2

3: Establishement of a TCP connection from TN2 port 20 to TN1 port 39427

4: Closing of the TCP connection from TN2 port 20 to TN1 port 39427

5: Closing of the TCP connection from TN1 port 39426 to TN2 port 21

85

5.1.7.2 EPSV

Purpose:

Check the correct translation of EPSV command

References:

• [RFC2766] Section 6.2

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A FTP-ALG MUST be available on the NUT

Test Requirement:

NONE

Discussion:

According to [RFC2766], it is recommended to have support for [RFC2428]. It involves that all v4 EPSV
packets send from TN1 have to be translated into v6 EPSV packets. If the FTP application has not been
upgraded to support EPSV and PASV extensions to allow access to v4, the EPSV packet has to be translated
into a PASV command.

Packets:

• IPv4/TCP/FTP EPSV (length: 46 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 46

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the IPv6/TCP/FTP EPSV]

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

TCP (length: 20)

SourcePort: (39526)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

FTP – Command EPSV (length: 6)

86

Request: “EPSV”

• IPv4/TCP/FTP PASV (length: 46 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 46

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the IPv6/TCP/FTP EPSV]

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

TCP (length: 20)

SourcePort: (39526)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

FTP – Command PASV (length: 6)

Request: “PASV”

• IPv4/TCP/FTP EPSV Response (length: 88 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 88

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)
Protocol: 6

HeaderChecksum: To Calculate
 SourceAddress: TN2 IPv4 Address

DestinationAddress: TN1 IPv4 Address given by The NUT

87

TCP (length: 20)

SourcePort: 21
DestinationPort: (39526)
SequenceNumber: (1)

AcknowledgmentNumber: (2)
DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

FTP – Response EPSV (length: 48)

Response: TN2_FTP_EPSV_v4

• IPv6/TCP/FTP EPSV Response (length: 108 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 68

NextHeader: 6
HopLimit : (63) [one less than in the IPv6/TCP/FTP EPSV

Response]
 SourceAddress: TN2 IPv6 Global NAT-PT Address

DestinationAddress: TN1 IPv6 Global Address

TCP (length: 20)

SourcePort: 21
DestinationPort: (39526)
SequenceNumber: (1)

AcknowledgmentNumber: (2)
DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

FTP – Response EPSV (length: 48)

Response: TN2_FTP_EPSV_v6

• IPv6/TCP/FTP EPSV(length: 66 bytes)

IPv6 Header (length: 40)

88

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 26

NextHeader: 6
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

TCP (length: 20)

SourcePort: (39526)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

FTP – Command EPSV (length: 6)

Request: “EPSV”

TN2_FTP_EPSV_v6 : The EPSV response has the following full syntax: “229 Entering Extended
Passive Mode (<d><d><d><tcp-port><d>)” where:

• <d> is a delimiter character (the character "|" is recommended).

• <tcp-port> is the same than in the corresponding IPv4/TCP/FTP packet.

In our specific case we have “229 Entering Extended Passive Mode (|||55555|)”.

TN2_FTP_PASV_v4: The full response syntax is “227 Entering Passive Mode (a1,a2,a3,a4,p1,p2)”
where a1.a2.a3.a4 is the IP address and p1*256+p2 is the port number. It Specifies the host TN1 and
port (for exemple 55555) to which the client should connect for the next file transfer. In our specific
case we have “227 Entering Passive Mode (131,254,201,1,217,3)”.

TN2_FTP_EPSV_v4 : The syntax is similar to TN2_FTP_EPSV_v6.

Procedure:

1. Establish a TCP connection from TN1 port 39526 to TN2 port 21 as defined in 5.1.2.1.

2. TN1 sends “IPv6/FTP/TCP EPSV” packet to TN2

3. TR forwards an “IPv4/FTP/TCP EPSV Response” packet from TN2 to TN1 (giving TCP port 55555)

4. Establish a TCP connection from TN1 port 39527 to TN2 port 55555 as defined in 5.1.2.1.

5. Close the TCP connection from TN1 port 39527 to TN2 port 55555 as defined in 5.1.2.1.

6. Close the TCP connection from TN1 port 39526 to TN2 port 21 as defined in 5.1.2.1

Observable Results:

• Step 2: The FTP-ALG on the NUT translates the packet in an “IPv4/TCP/FTP EPSV” packet and forwards it to
TN2. If the FTP application has not been upgraded to support EPRT and EPSV extensions to allow access to
v4, the NUT has to translate the packet in an “IPv4/TCP/FTP PASV” packet before to forward it to TN2.

89

• Step 3: The FTP-ALG on the NUT translates the packet in an “IPv6/TCP/FTP EPSV Response” packet and
forwards it to TN1.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

1: Establishement of a TCP connection from TN1 port 39526 to TN2 port 21

TN1
IPv6/FTP/TCP EPSV

---------------------------> 2 TN2

TN1 Step2
IPv4/FTP/TCP EPSV

--------------------------->
OR

IPv4/FTP/TCP PASV
--------------------------->

TN2

TN2

TN1 3
IPv4/FTP/TCP EPSV Response

<--------------------------- TN2

TN1
IPv6/FTP/TCP EPSV Response

<--------------------------- Step3 TN2

4: Establishement of a TCP connection from TN1 port 39527 to TN2 port 55555

5: Closing of the TCP connection from from TN1 port 39527 to TN2 port 55555

6: Closing of the TCP connection from TN1 port 39526 to TN2 port 21

90

5.1.8 DNS-ALG (*)

[RFC2874] defines A6 DNS records. However, because this RFC is in BCP status and because A6 records are not
deployed we will put aside this kind of records to focus on AAAA records only

Topology:

In this part, TN1 will be considered as the DNS server from the IPv6 Side and TR will be the DNS server of the
outside world.

• TN1 DNS and Reverse DNS Entries will be the following:

Entries DNS

Tn1bis.irisa.fr

a3a3.fe00.00ff.0200.0100.ffff.501.3ffe.ip6.int

TN1Bis: 3ffe:501:ffff:100:200:ff:fe00:a3a3

tn1bis.irisa.fr

• TR DNS and Reverse DNS Entries will be the following:

Entries DNS

Tn2.irisa.fr

1.201.254.131.in-addr.arpa

TN2: 131.254.201.1

tn2.irisa.fr

5.1.8.1 DNS Query & DNS Response (*)

Purpose:

Check the correct translation of DNS query and response packet.

References:

• [RFC2766] Pages 11, 12

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A DNS-ALG MUST be available on the NUT

Test Requirement:

NONE

Topology:

In this test case, TR will be the DNS server of the outside world.

Discussion:

If TN1 do a name look-up AAAA for TN2, a DNS-ALG available on the NUT MUST forward this unchanged
query as well as an A query for TN2. If a AAAA record is available in the reply, it will be forwarded to TN1Bis
without modification. Otherwise if there is an A record, The DNS-ALG MUST translate the reply adding the
appropriate PREFIX before to forward it to TN1

Packets:

• IPv6/UDP/DNS Query (length: 83 bytes)

91

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 43
NextHeader: 17
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TR IPv6 Global NAT-PT Address

UDP (length: 43)

SourcePort: (1000)
DestinationPort: 53

Length: 43
Checksum: To calculate

DNS (length: 35)

Identifier: (514)
QR: 0

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 0
NSCount: 0
ARCount: 0

Question Entry (length: 23)
Name: TN2 DNS
Type: 28 [AAAA]

Class: 1

• IPv6/UDP/DNS Response (length: 128 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 88
NextHeader: 17

HopLimit : (63) [one less than in the IPv4/UDP/DNS
Response Packet]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

UDP (length: 88)

SourcePort: (1000)
DestinationPort: 53

Length: 88
Checksum: To calculate

DNS (length: 80)

Identifier: (515)
QR: 1

Opcode: 0
AA: 0

92

TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 1
NSCount: 0
ARCount: 0

DNS Question Entry (length: 23)
Name: TN2 DNS
Type: 28 [AAAA]

Class: 1

DNS Answer (length: 45)
Name: TN2 DNS
Type: 28 [AAAA]

Class: 1
TTL: (0)

Length: 16
Address: TN2 IPv6 Global NAT-PT Address

• IPv4/UDP/DNS Query (length: 86 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 86

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the IPv6/UDP/DNS Query Packet]

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TN1 IPv4 Address given by NAT-PT Box
DestinationAddress: TR IPv4 Address

UDP (length: 66)

SourcePort: (1000)
DestinationPort: 53

Length: 66
Checksum: To Calculate

DNS (length: 58)

Identifier: (514)
QR: 0

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 2
ANCount: 0
NSCount: 0
ARCount: 0

DNS Question Entry (length: 23)
Name: TN2 DNS

93

Type: 1 [A]
Class: 1

DNS Question Entry (length: 23)
Name: TN2 DNS
Type: 28 [AAAA]

Class: 1

• IPv4/UDP/DNS Response (length: 119 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 119

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by NAT-PT Box

UDP (length: 99)

SourcePort: (1000)
DestinationPort: 53

Length: 99
Checksum: To Calculate

DNS (length: 91)

Identifier: (515)
QR: 1

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 2
ANCount: 1
NSCount: 0
ARCount: 0

Question Entry (length: 23)
Name: TN2 DNS

Type: 1 [A]
Class: 1

Question Entry (length: 23)
Name: TN2 DNS
Type: 28 [AAAA]

Class: 1

Answer (length: 33)
Name: TN2 DNS

Type: 1 [A]
Class: 1
TTL: (0)

Length: 4
Address: TN2 IPv4 Address

94

Procedure:

1. TN1 sends “IPv6/UDP/DNS Query” to TR to get IP address of TN2. (Type is AAAA and Name is TN2 DNS).

2. TR sends “IPv4/UDP/DNS Response” to TN1 to give IPv4 address of TN2.

Observable Results:

• Step1: The DNS-ALG on the NAT-PT Box Device forwards the AAAA Query to TR in an “IPv4/UDP/DNS
Query” Packet. This packet contains the previous AAAA Query as well as an A Query for TN2.

• Step2: The DNS-ALG on the NAT-PT Box Device forwards the Answer to TN1 in an “IPv6/UDP/DNS
Response” Packet. This packet has been translated adding the appropriate PREFIX to TN2 IPv4 Address.

Test Sequence:

Tester Link1 [IPv6] RUT
DNS-ALG

Link2 [IPv4] Tester(IPv6)

TN1
IPv6/UDP/DNS Query

--------------------------> 1 TR

Step1
IPv4/UDP/DNS Query

--------------------------> TR

TN1 2
IPv4/UDP/DNS Response

<--------------------------- TR

TN1
IPv6/UDP/DNS Response

<-------------------------- Step2

95

5.1.8.2 Inverse DNS Query & DNS Response (*)
Purpose:

Check the correct translation of Inverse DNS query and response packet.

References:

• [RFC2766]

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A DNS-ALG MUST be available on the NUT

Test Requirement:

NONE

Topology:

In this test case, TR will be the DNS server of the outside world.

Discussion:

Since [RFC3596] deprecates references to IP6.INT in [RFC2766] section 4.1, we have to take into account the
use of IP6.ARPA.

If TN1 do a name look-up PTR in order to get DNS Name of TN2, a DNS-ALG available on the NUT MUST
replace the string “IP6.ARPA” with “IN-ADDR.ARPA” and the v6 address octet (in reverse order) with the
corresponding v4 address octets in reverse order. The same has to be done for the response.

Packets:

• IPv6/UDP/DNS Inverse Query (length: 113 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 73
NextHeader: 17
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TR IPv6 Global NAT-PT Address

UDP (length: 73)

SourcePort: (1000)
DestinationPort: 53

Length: 73
Checksum: To calculate

DNS (length: 65)

Identifier: (516)
QR: 0

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 0

96

NSCount: 0
ARCount: 0

Question Entry (length: 41)
Name: TN2 IPv6 Reverse DNS

Type: 12 [PTR]
Class: 1

• IPv6/UDP/DNS Inverse Response (length: 185 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 145
NextHeader: 17

HopLimit : (63) [one less than in the IPv4/UDP/DNS Inverse
Response Packet]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

UDP (length: 145)

SourcePort: (1000)
DestinationPort: 53

Length: 145
Checksum: To calculate

DNS (length: 137)

Identifier: (517)
QR: 1

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 1
NSCount: 0
ARCount: 0

Question Entry (length: 41)
Name: TN2 IPv6 Reverse DNS

Type: 12 [PTR]
Class: 1

DNS Answer (length: 74)
Name: TN2 IPv6 Reverse DNS

Type: 12 [PTR]
Class: 1
TTL: (0)

Length: 19
PTRDName: TN2 DNS

• IPv4/UDP/DNS Inverse Query (length: 72 bytes)

IPv4 Header (length: 20)

Version: 4

97

IHL: 5
TypeOfService: (0)

TotalLength: 72
Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the IPv6/UDP/DNS Inverse Query

Packet]
Protocol: 17

HeaderChecksum: To calculate
 SourceAddress: TN1 IPv4 Address given by NAT-PT Box

DestinationAddress: TR IPv4 Address

UDP (length: 52)

SourcePort: (1000)
DestinationPort: 53

Length: 52
Checksum: To Calculate

DNS (length: 45)

Identifier: (516)
QR: 0

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 2
ANCount: 0
NSCount: 0
ARCount: 0

Question Entry (length: 32)
Name: TN2 IPv4 Reverse DNS

Type: 12 [PTR]
Class: 1

• IPv4/UDP/DNS Inverse Response (length: 129 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 129

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by NAT-PT Box

UDP (length: 109)

SourcePort: (1000)
DestinationPort: 53

98

Length: 109
Checksum: To Calculate

DNS (length: 101)

Identifier: (517)
QR: 1

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 1
NSCount: 0
ARCount: 0

Question Entry (length: 32)
Name: TN2 IPv4 Reverse DNS

Type: 12 [PTR]
Class: 1

DNS Answer (length: 57)
Name: TN2 IPv4 Reverse DNS

Type: 12 [PTR]
Class: 1
TTL: (0)

Length: 19
PTRDName: TN2 DNS

Procedure:

1. TN1 sends “IPv6/UDP/DNS Reverse Query” to TR to get DNS Name of TN2. (Type is PTR and Name is
TN2 IPv6 Reverse DNS).

2. TR sends “IPv4/UDP/DNS Reverse Response” to TN1 to give DNS Name of TN2.

Observable Results:

• Step1: The DNS-ALG on the NAT-PT Box Device translates the Query to TR in an “IPv4/UDP/DNS Reverse
Query” Packet. This packet contains a PTR request for TN2 IPv4 Reverse DNS.

• Step2: The DNS-ALG on the NAT-PT Box Device forwards the Answer to TN1 in an “IPv6/UDP/DNS Reverse
Response” Packet.

Test Sequence:

Tester Link1 [IPv6] RUT
DNS-ALG

Link2 [IPv4] Tester(IPv6)

TN1
IPv6/UDP/DNS Reverse Query

--------------------------> 1 TR

Step1
IPv4/UDP/DNS Reverse Query

--------------------------> TR

TN1 2
IPv4/UDP/DNS Reverse Response

<--------------------------- TR

TN1
IPv6/UDP/DNS Reverse Response
<-------------------------- Step2

99

5.2 NAPT-PT

NAPT-PT is a variant of NAT-PT that translates transport identifiers such as TCP/UDP port numbers and ICMP
identifiers in addition to IP header. As a consequence, NAPT-PT allows multiple IPv6 nodes to communicate with IPv4
nodes using a single public IPv4 address.

5.2.1 Basic NAT-PT
Because NAPT-PT is a variant of NAT-PT that translates transport identifiers, a NAPT-PT implementation MUST run
test define in the Basic NAT-PT section (Section 5.1).

100

5.2.2 Upper Layer Translation

5.2.2.1 UDP Port Translation

Purpose:

Check the correct translation of transport UDP port numbers with NAPT-PT.

References:

• [RFC2766] section 3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• NAPT-PT has to be activated on the NUT

Discussion:

NAPT-PT is a variant of NAT-PT that translates transport identifiers such as TCP/UDP port numbers and ICMP
identifiers in addition to IP header. Thus, in this test all IPv6/UDP traffic sent from TN1Bis and TN1Ter will be
forwarded by the NUT using the same IPv4 source address and a different UDP source port.

Packets:

• IPv6/UDP (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 17

HopLimit : (64) [or (63), one less than in the corresponding
IPv6/UDP Packet if translated by the NUT]

SourceAddress: …
DestinationAddress: …

UDP (length: 16)

SourcePort: …
DestinationPort: …

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0

101

TTL: (63) [one less than in the corresponding IPv6/UDP
Packet if translated by the NUT; or(64) if sent by TN2]

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: …
DestinationAddress: …

UDP (length: 16)

SourcePort: …
DestinationPort: …

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

1. TN1Bis sends an “IPv6/UDP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address.

2. TN1Ter sends an “IPv6/UDP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Ter IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address.

3. TN1Bis sends an “IPv6/UDP” packet to TN2 with source port 1001 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address.

4. TR forwards an “IPv4/UDP” packet from TN2 to TN1Bis with source port 23 and destination port PORT1. The
source address is TN2 IPv4 Address and the destination address is TN1Bis IPv4 Address given by The
NUT.

5. TR forwards an “IPv4/UDP” packet from TN2 to TN1Ter with source port 23 and destination port PORT2. The
source address is TN2 IPv4 Address and the destination address is TN1Ter IPv4 Address given by The
NUT. (same as TN1Bis IPv4 Address given by The NUT).

6. TN2 sends an “IPv4/UDP” packet to TN1Ter with source port 23 and destination port PORT3. The source
address is TN2 IPv4 Address and the destination address is TN1Ter IPv4 Address given by The NUT. (same
as TN1Bis IPv4 Address given by The NUT).

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/UDP” with source port PORT1, destination port 23 and sends it
to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the UDP checksum has to be adjusted.

• Step 2: The NUT translates this packet in “IPv4/UDP” with source port PORT2, destination port 23 and sends it
to TN2. The source address is TN1Ter IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the UDP checksum has to be adjusted. In this new packet the UDP
checksum has to be adjusted and the source address is the same as in the previous translated packet. PORT1
and PORT2 MUST be different since the senders are different .

• Step 3: The NUT translates this packet in “IPv4/UDP” with source port PORT3, destination port 23 and sends it
to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the UDP checksum has to be adjusted.

• Step 4: The NUT translates this packet in “IPv6/UDP” with source port 23, destination port 1000 and sends it to
TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Bis
IPv6 Global Address.

• Step 5: The NUT translates this packet in “IPv6/UDP” with source port 23, destination port 1000 and sends it to
TN1Ter. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Bis
IPv6 Global Address.

• Step 6: The NUT translates this packet in “IPv6/UDP” with source port 23, destination port 1001 and sends it to
TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Bis
IPv6 Global Address.

Test Sequence:

102

Tester Link1 [IPv6] RUT
DNS-ALG

Link2 [IPv4] Tester(IPv6)

TN1Bis
IPv6/UDP (src:1000,dst:23)

--------------------------> 1 TN2

Step1
IPv4/UDP(src:PORT1,dst:23)

--------------------------> TN2

TN1Ter
IPv6/UDP (src:1000,dst:23)

--------------------------> 2 TN2

Step2
IPv4/UDP(src: PORT2,dst:23)

--------------------------> TN2

TN1Bis
IPv6/UDP (src:1001,dst:23)

--------------------------> 3 TN2

Step3
IPv4/UDP(src: PORT3,dst:23)

--------------------------> TN2

4
IPv4/UDP(src:23,dst: PORT1)

<--------------------------- TN2

TN1Bis
IPv6/UDP (src:23,dst:1000)

<-------------------------- Step4

5
IPv4/UDP(src:23,dst: PORT2)

<--------------------------- TN2

TN1Ter
IPv6/UDP (src:23,dst:1000)

<-------------------------- Step5

6
IPv4/UDP(src:23,dst: PORT3)

<--------------------------- TN2

TN1Bis
IPv6/UDP (src:23,dst:1001)

<-------------------------- Step6

103

5.2.2.2 TCP Port Translation

Purpose:

Check the correct translation of transport TCP port numbers with NAPT-PT.

References:

• [RFC2766] Section 3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• NAPT-PT has to be activated on the NUT

Discussion:

NAPT-PT is a variant of NAT-PT that translates transport identifiers such as TCP/UDP port numbers and ICMP
identifiers in addition to IP header. Thus, in this test all IPv6/TCP traffic sent from TN1Bis and TN1Ter will be
forwarded by the NUT using the same IPv4 source address and a different TCP source port.

Packets:

• IPv6/TCP (length: 60 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 20
NextHeader: 6

HopLimit : (64) [or (63), one less than in the corresponding
IPv6/UDP Packet if translated by the NUT]

SourceAddress: …
DestinationAddress: …

TCP (length: 20)

SourcePort: …
DestinationPort: …

SequenceNumber: (0)
AcknowledgmentNumber: (0)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFlag
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFlag
FINFlag: FINFlag

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

Payload (length: 0)

• IPv4/TCP (length: 40 bytes)

IPv4 Header (length: 20)

Version: 4

104

IHL: 5
TypeOfService: (0)

TotalLength: 40
Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding IPv6/UDP
Packet if translated by the NUT; or(64) if sent by TN2]

Protocol: 6
HeaderChecksum: To calculate

 SourceAddress: …
DestinationAddress: …

TCP (length: 20)

SourcePort:
DestinationPort: (23)

SequenceNumber: S/N
AcknowledgmentNumber: A/N

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFlag
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFlag
FINFlag: FINFlag

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

Payload (length: 0)

Procedure:

Open a TCP Connection

1. TN1Bis sends an “IPv6/TCP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (SYNFlag
is set, S/N is set to 1 and A/N is set to 0)

2. TN1Ter sends an “IPv6/TCP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Ter IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (SYNFlag
is set, S/N is set to 1 and A/N is set to 0)

3. TN1Bis sends an “IPv6/TCP” packet to TN2 with source port 1001 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (SYNFlag
is set, S/N is set to 1 and A/N is set to 0)

4. TR forwards an “IPv4/TCP” packet from TN2 to TN1Bis with source port 23 and destination port PORT1. The
source address is TN2 IPv4 Address and the destination address is TN1Bis IPv4 Address given by The
NUT. (SYNFlag and ACKFlag are set, S/N is set to 10 and A/N is set to 2)

5. TR forwards an “IPv4/TCP” packet from TN2 to TN1Ter with source port 23 and destination port PORT2. The
source address is TN2 IPv4 Address and the destination address is TN1Ter IPv4 Address given by The
NUT. (SYNFlag and ACKFlag are set, S/N is set to 10 and A/N is set to 2)

6. TR forwards an “IPv4/TCP” packet from TN2 to TN1Bis with source port 23 and destination port PORT3. The
source address is TN2 IPv4 Address and the destination address is TN1Bis IPv4 Address given by The
NUT. (SYNFlag and ACKFlag are set, S/N is set to 10 and A/N is set to 2)

7. TN1Bis sends an “IPv6/TCP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (ACKFlag
is set, S/N is set to 2 and A/N is set to 11)

8. TN1Ter sends an “IPv6/TCP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Ter IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (ACKFlag
is set, S/N is set to 2 and A/N is set to 11)

105

9. TN1Bis sends an “IPv6/TCP” packet to TN2 with source port 1001 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (ACKFlag
is set, S/N is set to 2 and A/N is set to 11)

Close the TCP Connection

10. TN1Bis sends an “IPv6/TCP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (FINFlag
and ACKFlag are set, S/N is set to 2 and A/N is set to 11)

11. TN1Ter sends an “IPv6/TCP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Ter IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (FINFlag
and ACKFlag are set, S/N is set to 2 and A/N is set to 11)

12. TN1Bis sends an “IPv6/TCP” packet to TN2 with source port 1001 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (FINFlag
and ACKFlag are set, S/N is set to 2 and A/N is set to 11)

13. TR forwards an “IPv4/TCP” packet from TN2 to TN1Bis with source port 23 and destination port PORT1. The
source address is TN2 IPv4 Address and the destination address is TN1Bis IPv4 Address given by The
NUT. (ACKFlag is set, S/N is set to 11 and A/N is set to 3)

14. TR forwards an “IPv4/TCP” packet from TN2 to TN1Ter with source port 23 and destination port PORT2. The
source address is TN2 IPv4 Address and the destination address is TN1Ter IPv4 Address given by The
NUT. (ACKFlag is set, S/N is set to 11 and A/N is set to 3)

15. TR forwards an “IPv4/TCP” packet from TN2 to TN1Bis with source port 23 and destination port PORT3. The
source address is TN2 IPv4 Address and the destination address is TN1Bis IPv4 Address given by The
NUT. (ACKFlag is set, S/N is set to 11 and A/N is set to 3)

16. TR forwards an “IPv4/TCP” packet from TN2 to TN1Bis with source port 23 and destination port PORT1. The
source address is TN2 IPv4 Address and the destination address is TN1Bis IPv4 Address given by The
NUT. (FINFlag and ACKFlag are set, S/N is set to 11 and A/N is set to 3)

17. TR forwards an “IPv4/TCP” packet from TN2 to TN1Ter with source port 23 and destination port PORT2. The
source address is TN2 IPv4 Address and the destination address is TN1Ter IPv4 Address given by The
NUT. (FINFlag and ACKFlag are set, S/N is set to 11 and A/N is set to 3)

18. TR forwards an “IPv4/TCP” packet from TN2 to TN1Bis with source port 23 and destination port PORT3. The
source address is TN2 IPv4 Address and the destination address is TN1Bis IPv4 Address given by The
NUT. (FINFlag and ACKFlag are set, S/N is set to 11 and A/N is set to 3)

19. TN1Bis sends an “IPv6/TCP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (ACKFlag
is set, S/N is set to 3 and A/N is set to 12)

20. TN1Ter sends an “IPv6/TCP” packet to TN2 with source port 1000 and destination port 23. The source address
is TN1Ter IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (ACKFlag
is set, S/N is set to 3 and A/N is set to 12)

21. TN1Bis sends an “IPv6/TCP” packet to TN2 with source port 1001 and destination port 23. The source address
is TN1Bis IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT Address. (ACKFlag
is set, S/N is set to 3 and A/N is set to 12)

Observable Results:

• Step 1: The NUT translates this packet in “IPv4/TCP” with source port PORT1, destination port 23 and sends it
to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (SYNFlag is set, S/N is set to 1 and
A/N is set to 0).

• Step 2: The NUT translates this packet in “IPv4/TCP” with source port PORT2, destination port 23 and sends it
to TN2. The source address is TN1Ter IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (SYNFlag is set, S/N is set to 1 and
A/N is set to 0). PORT1 and PORT2 MUST be different since the senders are different .

• Step 3: The NUT translates this packet in “IPv4/TCP” with source port PORT3, destination port 23 and sends it
to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (SYNFlag is set, S/N is set to 1 and
A/N is set to 0).

• Step 4: The NUT translates this packet in “IPv6/TCP” with source port 23, destination port 1000 and sends it to
TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Bis
IPv6 Global Address. In this new packet the TCP checksum has to be adjusted. (SYNFlag and ACKFlag are
set, S/N is set to 10 and A/N is set to 2)

106

• Step 5: The NUT translates this packet in “IPv6/TCP” with source port 23, destination port 1000 and sends it to
TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Ter
IPv6 Global Address. In this new packet the TCP checksum has to be adjusted. (SYNFlag and ACKFlag are
set, S/N is set to 10 and A/N is set to 2)

• Step 6: The NUT translates this packet in “IPv6/TCP” with source port 23, destination port 1001 and sends it to
TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Bis
IPv6 Global Address. In this new packet the TCP checksum has to be adjusted. (SYNFlag and ACKFlag are
set, S/N is set to 10 and A/N is set to 2)

• Step 7: The NUT translates this packet in “IPv4/TCP” with source port PORT1, destination port 23 and sends it
to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (ACKFlag is set, S/N is set to 2 and
A/N is set to 11)

• Step 8: The NUT translates this packet in “IPv4/TCP” with source port PORT2, destination port 23 and sends it
to TN2. The source address is TN1Ter IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (ACKFlag is set, S/N is set to 2 and
A/N is set to 11)

• Step 9: The NUT translates this packet in “IPv4/TCP” with source port PORT3, destination port 23 and sends it
to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (ACKFlag is set, S/N is set to 2 and
A/N is set to 11)

• Step 10: The NUT translates this packet in “IPv4/TCP” with source port PORT1, destination port 23 and sends
it to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (FINFlag and ACKFlag are set, S/N
is set to 2 and A/N is set to 11)

• Step 11: The NUT translates this packet in “IPv4/TCP” with source port PORT2, destination port 23 and sends
it to TN2. The source address is TN1Ter IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (FINFlag and ACKFlag are set, S/N
is set to 2 and A/N is set to 11)

• Step 12: The NUT translates this packet in “IPv4/TCP” with source port PORT3, destination port 23 and sends
it to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (FINFlag and ACKFlag are set, S/N
is set to 2 and A/N is set to 11)

• Step 13: The NUT translates this packet in “IPv6/TCP” with source port 23, destination port 1000 and sends it
to TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Bis
IPv6 Global Address. In this new packet the TCP checksum has to be adjusted. (ACKFlag is set, S/N is set to
11 and A/N is set to 3)

• Step 14: The NUT translates this packet in “IPv6/TCP” with source port 23, destination port 1000 and sends it
to TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Ter
IPv6 Global Address. In this new packet the TCP checksum has to be adjusted. (ACKFlag is set, S/N is set to
11 and A/N is set to 3)

• Step 15: The NUT translates this packet in “IPv6/TCP” with source port 23, destination port 1001 and sends it
to TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Bis
IPv6 Global Address. In this new packet the TCP checksum has to be adjusted. (ACKFlag is set, S/N is set to
11 and A/N is set to 3)

• Step 16: The NUT translates this packet in “IPv6/TCP” with source port 23, destination port 1000 and sends it
to TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Bis
IPv6 Global Address. In this new packet the TCP checksum has to be adjusted. (FINFlag and ACKFlag are
set, S/N is set to 11 and A/N is set to 3)

• Step 17: The NUT translates this packet in “IPv6/TCP” with source port 23, destination port 1000 and sends it
to TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Ter
IPv6 Global Address. In this new packet the TCP checksum has to be adjusted. (FINFlag and ACKFlag are
set, S/N is set to 11 and A/N is set to 3)

• Step 18: The NUT translates this packet in “IPv6/TCP” with source port 23, destination port 1001 and sends it
to TN1Bis. The source address is TN2 IPv6 Global NAT-PT Address and the destination address is TN1Bis
IPv6 Global Address. In this new packet the TCP checksum has to be adjusted. (FINFlag and ACKFlag are
set, S/N is set to 11 and A/N is set to 3)

• Step 19: The NUT translates this packet in “IPv4/TCP” with source port PORT1, destination port 23 and sends
it to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (ACKFlag is set, S/N is set to 3 and
A/N is set to 12)

107

• Step 20: The NUT translates this packet in “IPv4/TCP” with source port PORT2, destination port 23 and sends
it to TN2. The source address is TN1Ter IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (ACKFlag is set, S/N is set to 3 and
A/N is set to 12)

• Step 21: The NUT translates this packet in “IPv4/TCP” with source port PORT3, destination port 23 and sends
it to TN2. The source address is TN1Bis IPv4 Address given by The NUT and the destination address is TN2
IPv4 Address. In this new packet the TCP checksum has to be adjusted. (ACKFlag is set, S/N is set to 3 and
A/N is set to 12)

Test Sequence:

108

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

Open The TCP Connections

TN1BIS
IPv6/TCP (SYN) S/N:1,A/N:0

--------------------------->
(src:1000,dst:23)

1 TN2

 Step1
IPv4/TCP

--------------------------->
(src:PORT1,dst:23)

TN2

TN1TER
IPv6/TCP (SYN) S/N:1,A/N:0

--------------------------->
(src:1000,dst:23)

2 TN2

 Step2
IPv4/TCP

--------------------------->
(src:PORT2,dst:23)

TN2

TN1BIS
IPv6/TCP (SYN) S/N:1,A/N:0

--------------------------->
(src:1001,dst:23)

3 TN2

 Step3
IPv4/TCP

--------------------------->
(src:PORT3,dst:23)

TN2

TN1BIS 4
IPv4/TCP (SYN,ACK) S/N:10,A/N:2
<---------------------------

(src:23,dst: PORT1)
TN2

TN1BIS
IPv6/TCP

<---------------------------
(src: 23,dst: 1000)

Step4

TN1TER 5
IPv4/TCP (SYN,ACK) S/N:10,A/N:2
<---------------------------

(src:23,dst: PORT2)
TN2

TN1TER
IPv6/TCP

<---------------------------
(src: 23,dst: 1000)

Step5

TN1BIS 6
IPv4/TCP (SYN,ACK) S/N:10,A/N:2
<---------------------------

(src:23,dst: PORT3)
TN2

TN1BIS
IPv6/TCP

<---------------------------
(src: 23,dst: 1001)

Step6

TN1BIS
IPv6/TCP (ACK) S/N:2,A/N:11

--------------------------->
(src: 1000,dst: 23)

7 TN2

 Step7
IPv4/TCP

--------------------------->
(src:PORT1,dst:23)

TN2

TN1TER
IPv6/TCP (ACK) S/N:2,A/N:11

--------------------------->
(src: 1000,dst: 23)

8 TN2

 Step8
IPv4/TCP

--------------------------->
(src:PORT2,dst:23)

TN2

TN1BIS
IPv6/TCP (ACK) S/N:2,A/N:11

--------------------------->
(src: 1001,dst: 23)

9 TN2

 Step9
IPv4/TCP

--------------------------->
(src:PORT3,dst:23)

TN2

109

Close The TCP Connections

TN1BIS
IPv6/TCP (FIN,ACK) S/N:2,A/N:11
--------------------------->

(src: 1000,dst: 23)
10 TN2

 Step10
IPv4/TCP

--------------------------->
(src:PORT1,dst:23)

TN2

TN1TER
IPv6/TCP (FIN,ACK) S/N:2,A/N:11
--------------------------->

(src: 1000,dst: 23)
11 TN2

 Step11
IPv4/TCP

--------------------------->
(src:PORT2,dst:23)

TN2

TN1BIS
IPv6/TCP (FIN,ACK) S/N:2,A/N:11
--------------------------->

(src: 1001,dst: 23)
12 TN2

 Step12
IPv4/TCP

--------------------------->
(src:PORT3,dst:23)

TN2

TN1BIS 13
IPv4/TCP (ACK) S/N:11,A/N:3

<---------------------------
(src:23,dst: PORT1)

TN2

TN1BIS
IPv6/TCP

<---------------------------
(src:23,dst: 1000)

Step13

TN1TER 14
IPv4/TCP (ACK) S/N:11,A/N:3

<---------------------------
(src:23,dst: PORT2)

TN2

TN1TER
IPv6/TCP

<---------------------------
(src:23,dst: 1000)

Step14

TN1BIS 15
IPv4/TCP (ACK) S/N:11,A/N:3

<---------------------------
(src:23,dst: PORT3)

TN2

TN1BIS
IPv6/TCP

<---------------------------
(src:23,dst: 1001)

Step15

TN1BIS 16
IPv4/TCP (FIN,ACK) S/N:11,A/N:3

<---------------------------
(src:23,dst: PORT1)

TN2

TN1BIS
IPv6/TCP

<---------------------------
(src:23,dst: 1000)

Step16

TN1TER 17
IPv4/TCP (FIN,ACK) S/N:11,A/N:3

<---------------------------
(src:23,dst: PORT1)

TN2

TN1TER
IPv6/TCP

<---------------------------
(src:23,dst: 1000)

Step17

TN1BIS 18
IPv4/TCP (FIN,ACK) S/N:11,A/N:3

<---------------------------
(src:23,dst: PORT1)

TN2

TN1BIS
IPv6/TCP

<---------------------------
(src:23,dst: 1001)

Step18

TN1BIS
IPv6/TCP (ACK) S/N:3,A/N:11

---------------------------> 19 TN2

110

(src:1000,dst: 23)

 Step19
IPv4/TCP

--------------------------->
(src:23,dst: PORT1)

TN2

TN1TER
IPv6/TCP (ACK) S/N:3,A/N:11

--------------------------->
(src:1000,dst: 23)

20 TN2

 Step20
IPv4/TCP

--------------------------->
(src:23,dst: PORT2)

TN2

TN1BIS
IPv6/TCP (ACK) S/N:3,A/N:11

--------------------------->
(src:1001,dst: 23)

21 TN2

 Step21
IPv4/TCP

--------------------------->
(src:23,dst: PORT3)

TN2

111

5.2.3 ICMPv6 Translation

5.2.3.1 ICMPv6 Identifier Translation

Purpose:

Check the correct translation of ICMPv6 Identifiers with NAPT-PT.

References:

• [RFC2766] Section 2.2.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• NAPT-PT has to be activated on the NUT

Discussion:

NAPT-PT is a variant of NAT-PT that translates transport identifiers such as TCP/UDP port numbers and ICMP
identifiers in addition to IP header. Thus, in this test all ICMPv6 traffic sent from TN1Bis and TN1Ter will be
forwarded by the NUT using the same IPv4 source address and a different ICMP identifier.

The ICMP checksum should be adjusted to account for the address and port change. All ICMPv6 Informational
messages except “ICMPv6 Echo Request” and “ICMPv6 Echo Reply” MUST be silently dropped.

Packets:

• ICMPv6 Echo Request (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1Bis/TN1Ter IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Echo Request (length: 16)

Type: 128
Code: 5

Checksum: To calculate
Identifier: 1000

SequenceNumber: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Echo Reply (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 58

HopLimit : (63) [one less than in the ICMPv4 Echo Reply]

112

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1Bis/TN1Ter IPv6 Global Address

ICMPv6 Echo Reply (length: 16)

Type: 129
Code: 5

Checksum: To calculate
Identifier: 1000

SequenceNumber: (0) [Same as in the ICMPv4 Echo Reply]

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Echo Reply (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

 Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1Bis/TN1Ter IPv4 Address given by

The NUT

ICMPv4 Echo Reply (length: 16)

Type: 0
Code: 5

Checksum: To Calculate
Identifier: ID1/ID2

SequenceNumber: (0) [Same as in the ICMPv6 Echo
Request]

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Echo Request (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the ICMPv6 Echo Request]

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN1Bis/TN1Ter IPv4 Address given by The

113

NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Echo Request (length: 16)

Type: 8
Code: 5

Checksum: To Calculate
Identifier: ID1/ID2

SequenceNumber: (0) [Same as in the ICMPv6 Echo
Request]

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

• TN1Bis sends an “ICMPv6 Echo Request” to TN2 with identifier 1000

• TN1Ter sends an “ICMPv6 Echo Request” to TN2 with identifier 1000

• TN1Bis sends an “ICMPv6 Echo Request” to TN2 with identifier 1001

• TR forwards an “ICMPv4 Echo Reply” from TN2 to TN1Bis with identifier 1000

• TR forwards an “ICMPv4 Echo Reply” from TN2 to TN1Ter with identifier 1000

• TR forwards an “ICMPv4 Echo Reply” from TN2 to TN1Bis with identifier 1001

Observable Results:

• Step 1: The NUT translates this packet in “ICMPv4 Echo Request” with identifier ID1 and sends it to TN2. In
this new packet the ICMP checksum has to be adjusted.

• Step 2: The NUT translates this packet in “ICMPv4 Echo Request” with identifier ID2 and sends it to TN2. In
this new packet the ICMP checksum has to be adjusted. ID1 and ID2 MUST be different.

• Step 3: The NUT translates this packet in “ICMPv4 Echo Request” with identifier ID3 and sends it to TN2. In
this new packet the ICMP checksum has to be adjusted.

• Step 4: The NUT translates this packet in “ICMPv6 Echo Reply” with identifier 1000 and sends it to TN1Bis. In
this new packet the ICMP checksum has to be adjusted.

• Step 5: The NUT translates this packet in “ICMPv6 Echo Reply” with identifier 1000 and sends it to TN1Ter. In
this new packet the ICMP checksum has to be adjusted.

• Step 6: The NUT translates this packet in “ICMPv6 Echo Reply” with identifier 1001 and sends it to TN1Bis. In
this new packet the ICMP checksum has to be adjusted.

Test Sequence:

114

Tester Link1 [IPv6] RUT
DNS-ALG

Link2 [IPv4] Tester(IPv6)

TN1Bis
ICMPv6 Echo Request (ID: 1000)
--------------------------> 1 TN2

Step1
ICMPv4 Echo Request (ID: ID1)

--------------------------> TN2

TN1Ter
ICMPv6 Echo Request (ID: 1000)
--------------------------> 2 TN2

Step2
ICMPv4 Echo Request (ID: ID2)

--------------------------> TN2

TN1Bis
ICMPv6 Echo Request (ID: 1001)
--------------------------> 3 TN2

Step3
ICMPv4 Echo Request (ID: ID3)

--------------------------> TN2

4
ICMPv4 Echo Reply (ID: ID1)

<-------------------------- TN2

TN1Bis
ICMPv6 Echo Reply (ID: 1000)

<-------------------------- Step4

5
ICMPv4 Echo Reply (ID: ID2)

<-------------------------- TN2

TN1Ter
ICMPv6 Echo Reply (ID: 1000)

<-------------------------- Step5

6
ICMPv4 Echo Reply (ID: ID3)

<-------------------------- TN2

TN1Bis
ICMPv6 Echo Reply (ID: 1001)

<-------------------------- Step6

115

5.2.4 FTP-ALG Extension

5.2.4.1 TCP Port translation in EPRT command

Purpose:

Check the correct translation of tcp port with EPRT Command

References:

• [RFC2766] Section 6.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• NAPT-PT has to be activated on the NUT

• A FTP-ALG MUST be available on the NUT

Test Requirement:

NONE

Discussion:

The main goal of this test is to check translation of EPRT Commands in the case of NAPT-PT. As defined in 0,
TCP Port from the IPv6 Side will be translated. Moreover, TCP ports in commands arguments have also to be
translated.

Procedure:

1. Establish a TCP connection from TN1Bis and TN1Ter port 39626 to TN2 port 21 as defined in 5.1.2.1

2. Do the previous test concerning EPRT Command (Section 5.1.7.1) using TN1Bis and TN1Ter with:

• a TCP connection from TN2 port 20 to TN1Bis port PORT1

• a TCP connection from TN2 port 20 to TN1Ter port PORT2

4. Close the TCP connection from TN2 port 20 to TN1Bis and TN1Ter port PORT1 and PORT2 as defined in 0

5. Close the TCP connection from TN1Bis and TN1Ter port 39626 to TN2 port 21 as defined in 5.1.2.1

Observable Results:

• Step 2:

• As defined in 0, TCP Port from the IPv6 Side will be translated in TCP packets used for the
connection. We remind that TN1Bis and TN1Ter will use the same IPv4 address.

• The IPv4/TCP/FTP EPRT Packet forwarded by the NUT will use the same IPv4 source address for
each FTP session but two distinct ports will be given in the EPRT Command. The ports will be
different for each IPv6 address. We will have PORT1 and PORT2

• The Connection will be established with TN1Bis and TN1Ter using port 39627.

116

5.2.4.2 TCP Port translation in EPSV command

Purpose:

Check the correct translation correct tcp port translation with EPSV Command

References:

• [RFC2766] Section 6.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• NAPT-PT has to be activated on the NUT

• A FTP-ALG MUST be available on the NUT

Test Requirement:

NONE

Discussion:

The main goal of this test is to check translation of EPSV Commands in the case of NAPT-PT. As defined in 0,
TCP Port from the IPv6 Side will be translated. Moreover, TCP ports in commands arguments have also to be
translated.

Procedure:

1. Establish a TCP connection from TN1Bis and TN1Ter port 39626 to TN2 port 21 as defined in 5.1.2.1

2. Do the previous test concerning EPSV Command (Section 5.1.7.2) using TN1Bis and TN1Ter with

• a TCP connection from TN1Bis port 39627 to TN2 port 55555

• a TCP connection from TN1Ter port 39627 to TN2 port 55555

3. Close the TCP connection from TN1Bis and TN1Ter port 39627 to TN2 port 55555

4. Close the TCP connection from TN1Bis and TN1Ter port 39626 to TN2 port 21 as defined in 5.1.2.1

Observable Results:

• Step 2: As defined in 0, TCP Port from the IPv6 Side will be translated in TCP packets used for the connection.
We remind that TN1Bis and TN1Ter will use the same IPv4 address. Thus, two distinct ports will be use for
FTP data connections from the IPv4 side. The ports will be different for each IPv6 address. We will have
PORT1 and PORT2

Observable Results will be identical to those described in Section 5.1.7.2 taking into account TN1Bis and
TN1Ter and the TCP port translation described in Section 0 of the TCP Header.

117

5.3 Bi-directional-NAT-PT

With Bi-directional-NAT-PT, sessions can be initiated from hosts in V4 network as well as the V6 network. V6 network
addresses are bound to V4 addresses, statically or dynamically as connections are established in either direction. For
V4 Address assignment for incoming connections (V4 to V6) at least two solutions may be choosed:

• Either a DNS Request is done from a v4 host for the corresponding v6 host. If a V4 address is not previously
assigned to this V6 node, NAT-PT would assign one at this time.

• Either we create a State in the NUT for the corresponding v6 hosts before testing. As a Consequent, further
sessions could be initiated from hosts in V4 network. This State may be established either statically either
dynamically.

The following packet may be used to establish dynamically a state for TN in the NUT prior to test. This packet will be
sent from TN to TN2.

• IPv6/UDP STATE (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 16
NextHeader: 17
HopLimit : (64)

SourceAddress: TN IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Bi-directional NAT-PT is not a strict requirement. In its simplest form, NAT-PT is only a one way connectivity.
Nevertheless, an implementation which supports Bi-directional NAT-PT must include one of the Unidirectionnal NAT-PT
mechanism: i.e. either Basic NAT-PT or NAPT-PT.

5.3.1 Unidirectionnal NAT-PT
Because an implementation which supports Bi-directional NAT-PT must include one of the Unidirectionnal NAT-PT
mechanism, test for this mechanism has to be run prior specifics test cases for Bi-directional NAT-PT. It means that
according to the mechanism used, either test cases for Basic NAT-PT or NAPT-PT MUST be run.

118

5.3.2 Basic Translation

5.3.2.1 TOS fields from IPv4 Header

Purpose:

Check the correct translation of the TOS Field.

References:

• [RFC2765] Section 3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

• The implementation should have the possibility to ignore the IPv4 TOS field and always set the IPv6 traffic
class to zero.

Discussion:

The IPv6 Traffic Class field is by default copied from the IPv4 TOS field, Nevertheless, all implementations
SHOULD provide the ability to ignore the IPv4 TOS field class and always set the IPv6 Traffic Class field to 0.

Packets:

• IPv4/UDP (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: TOS
TotalLength: 36

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv6/UDP (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6

119

TrafficClass: TRAFFIC_CLASS
FlowLabel: 0

PayloadLength: 16
NextHeader: 17

HopLimit : (63) [one less than in the IPv6/UDP 1]
SourceAddress: TN2 IPv6 Global NAT-PT Address

DestinationAddress: TN1 IPv6 Global Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

0. Create a State in the NUT for TN1

1. TR forwards an “IPv4/UDP” Packet from TN2 to TN1 with TOS Field set to 255.

2. The Implementation activates the ability to ignore the IPv4 TOS field and always set the IPv6 Traffic Class field
to 0.

3. TR forwards an “IPv4/UDP” Packet from TN2 to TN1 with TOS Field set to 255.

4. The Implementation desactivates the ability to ignore the IPv4 TOS field.

Observable Results:

• Step 1: The NUT translates this packet in “IPv6/UDP” with TOS also set to 255 and sends it to TN1

• Step 3: The NUT translates this packet in “IPv6/UDP” with TOS set to 0 and sends it to TN1

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

TN1 1
IPv4/UDP (TOS = 255)

<--------------------------- TN2

TN1
IPv6/UDP (Traffic Class = 255)

<--------------------------- Step1

2: Activation of the ability to
ignore the IPv4 TOS field

TN1 3
IPv4/UDP (TOS = 255)

<--------------------------- TN2

TN1
IPv6/UDP (Traffic Class = 0)

<--------------------------- Step3

4: Desactivation of the ability to
ignore the IPv4 TOS field

120

5.3.2.2 IPv4 Options

Purpose:

Check translation of IPv4 Options

References:

• [RFC2765] Section 3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

If IPv4 options are present in the IPv4 packet, they are ignored i.e., there is no attempt to translate them.
However, if an unexpired source route option is present then the packet MUST instead be discarded, and an
ICMPv4 "destination unreachable/source route failed" (Type 3/Code 5) error message SHOULD be returned to
the sender.

Packets:

• IPv4/UDP 1 (with Timestamp Option) (length: 44 bytes)

IPv4 Header (length: 28)

Version: 4
IHL: 7

TypeOfService: (0)
TotalLength: 44

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

Timestamp Option (length:8)
Type: 68
Length: 8
Pointer:5

Overflow: 0
Flag: 0

Timestamp: 170

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP 2 (with Record Route Option) (length: 48 bytes)

121

IPv4 Header (length: 32)

Version: 4
IHL: 8

TypeOfService: (0)
TotalLength: 48

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Record Route Option (length:11)
Type: 7

Length: 11
Pointer:4

RouteData: 0.0.0.0
RouteData: 0.0.0.0

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP 3 (with Loose Source Route Option) (length: 44 bytes)

IPv4 Header (length: 28)

Version: 4
IHL: 7

TypeOfService: (0)
TotalLength: 44

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Loose Source Route Option (length:7)
Type: 131
Length: 7
Pointer:4

RouteData: TN1 IPv4 Address given by The NUT

122

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP 4 (with Expired Loose Source Route Option) (length: 44 bytes)

IPv4 Header (length: 28)

Version: 4
IHL: 7

TypeOfService: (0)
TotalLength: 44

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Loose Source Route Option (length:7)
Type: 131
Length: 7
Pointer:8

RouteData: TN2 IPv4 Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP 5 (with Strict Source Route Option) (length: 44 bytes)

IPv4 Header (length: 28)

Version: 4
IHL: 7

TypeOfService: (0)
TotalLength: 44

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address

123

DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Strict Source Route Option (length:7)
Type: 137
Length: 7
Pointer:4

RouteData: TN1 IPv4 Address given by The NUT

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP 6 (with Expired Strict Source Route Option) (length: 44 bytes)

IPv4 Header (length: 28)

Version: 4
IHL: 7

TypeOfService: (0)
TotalLength: 44

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Strict Source Route Option (length:7)
Type: 137
Length: 7
Pointer:8

RouteData: TN2 IPv4 Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP 7 (with Opt: Timestamp, strict source routing expired, record route, end of list) (length: 68 bytes)

IPv4 Header (length: 52)

124

Version: 4
IHL: 13

TypeOfService: (0)
TotalLength: 68

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Strict Source Route Option (length:7)
Type: 137
Length: 7
Pointer:8

RouteData: TN2 IPv4 Address

Timestamp Option (length:8)
Type: 68
Length: 8
Pointer:5

Overflow: 0
Flag: 0

Timestamp: 170

NoOperation Option (length:1)
Type: 1

Record Route Option (length:11)
Type: 7

Length: 11
Pointer:4

RouteData: 0.0.0.0
RouteData: 0.0.0.0

EndofOptionList (length:1)
Type: 0

Padding = 000000

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Destination Unreachable (length: 64 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 64

Identifier: XXXXX
Reserved: 0

125

DF: 1
MF: 0

FragmentOffset: 0
TTL: XXXXX
Protocol: 1

HeaderChecksum: XXXXX
SourceAddress: NUT IPv4 Address Link2

DestinationAddress: TN2 IPv4 Address

ICMPv4 Destination Unreachable (length: 44)

Type: 3
Code: 5

Checksum: To Calculate
Unused: 0

Payload (length: 36)

The Ipv4 Header plus the first 8 bytes of IPv4/UDP 3 (with
Loose Source Route Option)

Or
The Ipv4 Header plus the first 8 bytes of IPv4/UDP 5 (with

Strict Source Route Option)

• IPv6/UDP (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 16

NextHeader: 17
HopLimit : (63) [one less than in the corresponding

IPv4/UDP]
SourceAddress: TN2 IPv6 Global NAT-PT Address

DestinationAddress: TN1 IPv6 Global Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

0. Create a State in the NUT for TN1

1. TN2 Sends “IPv4/UDP 1” Packet (with Opt Timestamp) to TN1.

2. TN2 Sends “IPv4/UDP 2” Packet (with Opt Record Route) to TN1.

3. TN2 Sends “IPv4/UDP 3” Packet (with Opt Loose Route) to TN1.

4. TN2 Sends “IPv4/UDP 4” Packet (with Opt Loose Route expired) to TN1.

5. TN2 Sends “IPv4/UDP 5” Packet (with Opt Strict Route) to TN1.

6. TN2 Sends “IPv4/UDP 6” Packet (with Opt Strict Route Expired) to TN1.

7. TN2 Sends “IPv4/UDP 7”Packet (with Opt: Timestamp, strict source routing expired, record route, end of list) to
TN1.

126

Observable Results:

• Step 1: The NUT must discard this option and forward the translated packet “IPv6/UDP” to TN1.

• Step 2: The NUT must discard this option and forward the translated packet “IPv6/UDP” to TN1.

• Step 3: TN2 should receive “ICMPv4 Destination Unreachable” with IPv4/UDP 3 as payload from The NUT
(type 3, code 5).

• Step 4: The NUT must discard this option and forward the translated packet “IPv6/UDP” to TN1

• Step 5: TN2 should receive “ICMPv4 Destination Unreachable” with IPv4/UDP 5 as payload from The NUT
(type 3, code 5).

• Step 6: The NUT must discard this option and forward the translated packet “IPv6/UDP” to TN1.

• Step 7: The NUT must discard these options and forward the translated “IPv6/UDP” packet to TN1

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

TN1 1
IPv4/UDP 1 (with Opt Timestamp)
<--------------------------- TN2

TN1
IPv6/UDP

<--------------------------- Step1

TN1 2
IPv4/UDP 2 (with Opt Record Route)
<--------------------------- TN2

TN1
IPv6/UDP

<--------------------------- Step2

TN1 3
IPv4/UDP 3 (with Opt Loose Route)
<--------------------------- TN2

Step3

ICMPv4 Destination Unreachable
(type 3, code 5)

---------------------------> TN2

TN1 4

IPv4/UDP 4 (with Opt Loose Route
expired)

<--------------------------- TN2

TN1
IPv6/UDP

<--------------------------- Step4

TN1 5
IPv4/UDP 5 (with Opt Strict Route)
<--------------------------- TN2

Step5

ICMPv4 Destination Unreachable
(type 3, code 5).

--------------------------->
TN2

TN1
6

IPv4/UDP 6 (with Opt Strict Route
Expired)

<--------------------------- TN2

TN1
IPv6/UDP

<--------------------------- Step6

TN1

7

IPv4/UDP 7 (with Opt: Timestamp,
strict source routing expired, record

route, end of list)
<--------------------------- TN2

TN1
IPv6/UDP

<--------------------------- Step7

127

5.3.3 Upper Layer Translation

5.3.3.1 UDP Packet without UDP checksum

Purpose:

Check translation of IPv4/UDP Packet with checksum set to 0.

References:

• [RFC2765], Section 3.2

• [RFC2766], Section 5.3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

UDP Checksum may be set to 0 if used with IPv4. It is not the case in IPv6. This test checks the correct
calculation of IPv6 UDP Checksum when the UDP checksum was set to 0 in the IPv4 Packet to translate.

Packets:

• IPv4/UDP (With UDP Checksum set to 0) (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: 0

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv6/UDP (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

128

FlowLabel: 0
PayloadLength: 16

NextHeader: 17
HopLimit : (63) [one less than in the corresponding

IPv4/UDP]
SourceAddress: TN2 Global IPv6 NAT-PT Address

DestinationAddress: TN1 Global IPv6 Address

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: Calculated UDP Checksum

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

0. Create a State in the NUT for TN1

1. TN2 Sends “IPv4/UDP” Packet to TN1. The UDP Checksum is set to 0.

Observable Results:

• Step 1: The NUT translates this packet in “IPv6/UDP” Packet and sends it to TN1. In this packet, the UDP
checksum has to be calculated.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

TN1 1
IPv4/UDP (UDP Checksum == 0)

<--------------------------- TN2

TN1
IPv6/UDP

<--------------------------- Step1

129

5.3.3.2 TCP Translation

Purpose:

Check correct translation of TCP Packets

References:

• [RFC2766], Section 5.3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

The TCP checksum should be adjusted to account for the address changes, going from V4 to V6 addresses.

Packets:

• IPv4/TCP (length: 40 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 40

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: SequenceNumber
AcknowledgmentNumber: AcknowledgmentNumber

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFlag
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFlag
FINFlag: FINFlag

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

Payload (length: 0)

• IPv6/TCP (length: 60 bytes)

130

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 20

NextHeader: 6
HopLimit : (63) [one less than in the corresponding

IPv4/TCP]
SourceAddress: TN2 IPv6 Global NAT-PT Address

DestinationAddress: TN1 IPv6 Global Address

TCP (length: 20)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: SequenceNumber
AcknowledgmentNumber: AcknowledgmentNumber

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFlag
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFlag
FINFlag: FINFlag

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

Payload (length: 0)

Procedure:

0. Create a State in the NUT for TN1

Open a TCP Connection

1. TN2 sends an “IPv4/TCP” packet to TN1. (SYNFlag is set, S/N is set to 1 and A/N is set to 0)

2. TN1 sends an “IPv6/TCP” packet to TN2. (SYNFlag and ACKFlag are set, S/N is set to 10 and A/N is set to 2)

3. TN2 sends an “IPv4/TCP” packet to TN1. (ACKFlag is set, S/N is set to 2 and A/N is set to 11)

Close the TCP Connection

4. TN2 sends an “IPv4/TCP” packet to TN1. (FINFlag and ACKFlag are set, S/N is set to 2 and A/N is set to 11)

5. TN1 sends an “IPv6/TCP” packet to TN2. (ACKFlag is set, S/N is set to 11 and A/N is set to 3)

6. TN1 sends an “IPv6/TCP” packet to TN2. (FINFlag and ACKFlag are set, S/N is set to 11 and A/N is set to 3)

7. TN2 sends an “IPv4/TCP” packet to TN1. (ACKFlag is set, S/N is set to 3 and A/N is set to 12)

Observable Results:

• Step 1: The NUT translates this packet in “IPv6/TCP” and sends it to TN1. In this new packet the TCP
checksum has to be adjusted. (SYNFlag is set, S/N is set to 1 and A/N is set to 0)

• Step 2: The NUT translates this packet in “IPv4/TCP” and sends it to TN2. In this new packet the TCP
checksum has to be adjusted. (SYNFlag and ACKFlag are set, S/N is set to 10 and A/N is set to 2)

• Step 3: The NUT translates this packet in “IPv6/TCP” and sends it to TN1. In this new packet the TCP
checksum has to be adjusted. (ACKFlag is set, S/N is set to 2 and A/N is set to 11)

• Step 4: The NUT translates this packet in “IPv6/TCP” and sends it to TN1. In this new packet the TCP
checksum has to be adjusted. (FINFlag and ACKFlag are set, S/N is set to 2 and A/N is set to 11)

• Step 5: The NUT translates this packet in “IPv4/TCP” and sends it to TN2. In this new packet the TCP
checksum has to be adjusted. (ACKFlag is set, S/N is set to 11 and A/N is set to 3)

• Step 6: The NUT translates this packet in “IPv4/TCP” and sends it to TN2. In this new packet the TCP
checksum has to be adjusted. (FINFlag and ACKFlag are set, S/N is set to 11 and A/N is set to 3)

131

• Step 7: The NUT translates this packet in “IPv6/TCP” and sends it to TN1. In this new packet the TCP
checksum has to be adjusted. (ACKFlag is set, S/N is set to 3 and A/N is set to 12)

Test Sequence:

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by TR) Tester(IPv6)

Open The TCP Connection

TN1 1
IPv4/TCP (SYN) S/N:1,A/N:0

<--------------------------- TN2

TN1
IPv6/TCP

<--------------------------- Step1

TN1
IPv6/TCP (SYN,ACK) S/N:10,A/N:2
---------------------------> 2 TN2

Step2
IPv4/TCP

---------------------------> TN2

TN1 3
IPv4/TCP (ACK) S/N:2,A/N:11

<--------------------------- TN2

TN1
IPv6/TCP

<--------------------------- Step3

Close The TCP Connection

TN1 4
IPv4/TCP (FIN,ACK) S/N:2,A/N:11

<--------------------------- TN2

TN1
IPv6/TCP

<--------------------------- Step4

TN1
IPv6/TCP (ACK) S/N:11,A/N:3

---------------------------> 5 TN2

Step5
IPv4/TCP

---------------------------> TN2

TN1
IPv6/TCP (FIN,ACK) S/N:11,A/N:3
---------------------------> 6 TN2

Step6
IPv4/TCP

---------------------------> TN2

TN1 7
IPv4/TCP (ACK) S/N:3,A/N:11

<--------------------------- TN2

TN1
IPv6/TCP

<--------------------------- Step7 TN2

132

5.3.4 ICMPv4 Translation
An ICMPv4 Error Packet has sometimes an IPv4 Packet in its payload. In this part we will consider that the translation of
the inner IP header has to be done. Indeed, what is the need to translate an ICMPv4 error message if the inner part is
not also translated?

The ICMP message format is specified by the value of the Type field:

0 Echo reply.

1 Reserved.

2 Reserved.

3 Destination unreachable.

4 Source quench.

5 Redirect.

6 Alternate Host Address.

8 Echo request.

9 Router advertisement.

10 Router solicitation.

11 Time exceeded.

12 Parameter problem.

13 Timestamp request.

14 Timestamp reply.

15 Information request.

16 Information reply.

17 Address mask request.

18 Address mask reply.

19 Reserved (for security).

20-29 Reserved (for robustness experiment).

30 Traceroute.

31 Conversion error.

32 Mobile Host Redirect.

33 IPv6 Where-Are-You.

34 IPv6 I-Am-Here.

35 Mobile Registration Request.

36 Mobile Registration Reply.

37 Domain Name request.

38 Domain Name reply.

39 SKIP Algorithm Discovery Protocol.

40 Photuris, Security failures.

41-255 Reserved.

133

5.3.4.1 ICMPv4 Informational Messages

Purpose:

Check translation of ICMPv4 Informational Messages.

References:

• [RFC2765], Section 3.3

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

This test checks the correct translation of ICMPv4 Informational Messages. The ICMP checksum should be
adjusted to account for the address change, going from V4 to V6 addresses. All ICMPv4 Informational
messages except “ICMPv4 Echo Request” and “ICMPv4 Echo Reply” MUST be silently dropped.

Packets:

• ICMPv4 Echo Request (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 36

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Echo Request (length: 16)

Type: 8
Code: 0

Checksum: To calculate
Identifier: (612)

SequenceNumber: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Echo Reply (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 36

Identifier: (0)

134

Reserved: 0
DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Echo

Reply]
Protocol: 1

HeaderChecksum: To Calculate
 SourceAddress: TN2 IPv4 Address

DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Echo Reply (length: 16)

Type: 0
Code: 0

Checksum: To Calculate
Identifier: (612) [same as in the corresponding ICMPv4 Echo

Request]
SequenceNumber: (0) [same as in the corresponding

ICMPv4 Echo Request]

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Information Request (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 36

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Information Request (length: 16)

Type: 15
Code: 0

Checksum: To Calculate
Identifier: (0)

SequenceNumber: (0)

• ICMPv4 Information Reply (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 36

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

135

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Information Reply (length: 16)

Type: 16
Code: 0

Checksum: To Calculate
Identifier: (0)

SequenceNumber: (0)

• ICMPv4 Timestamp Request (length: 40 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 40

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Timestamp Request (length: 20)

Type: 13
Code: 0

Checksum: To Calculate
Identifier: (0)

SequenceNumber: (0)
OriginateTimestamp: 0
Receive timestamp: 0
Transmit timestamp: 0

• ICMPv4 Timestamp Reply (length: 40 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 40

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

136

ICMPv4 Timestamp Reply (length: 20)

Type: 14
Code: 0

Checksum: To Calculate
Identifier: (0)

SequenceNumber: (0)
OriginateTimestamp: 0
Receive timestamp: 0
Transmit timestamp: 0

• ICMPv4 Address Mask Request (length: 32 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 32

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Address Mask Request (length: 12)

Type: 17
Code: 0

Checksum: To Calculate
Identifier: (0)

SequenceNumber: (0)
Address mask:: 0xFFFFFF00

• ICMPv4 Address Mask Reply (length: 32 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 32

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Address Mask Request (length: 12)

Type: 17

137

Code: 0
Checksum: To Calculate

Identifier: (0)
SequenceNumber: (0)

Address mask: 0xFFFFFF00

• ICMPv4 Router Advertisement (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 36

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Router Advertisement (length: 16)

Type: 17
Code: 0

Checksum: To Calculate
Advertisement count:
Address Entry size:

Lifetime:
Address[0]:
Address[1]:

• ICMPv4 Router Solicitation (length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 28

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Router Solicitation (length: 8)

Type: 17
Code: 0

Reserved: 0

• ICMPv4 Unknown Informational Messages (length: 28 bytes)

138

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 28

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 (length: 8)

Type: TYPE
Code: CODE

Checksum: To calculate
Data: 0

• ICMPv6 Echo Request (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 16

NextHeader: 58
HopLimit : (63) [one less than in the corresponding ICMPv4

Echo Request]
SourceAddress: TN2 IPv6 Global NAT-PT Address

DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Echo Request (length: 16)

Type: 128
Code: 0

Checksum: To calculate
Identifier: (612) [same as in the corresponding ICMPv4 Echo

Request]
SequenceNumber: (0) [same as in the corresponding

ICMPv4 Echo Request]

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Echo Reply (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 16

NextHeader: 58
HopLimit : (64)

SourceAddress: TN2 IPv6 Global NAT-PT Address

139

DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Echo Reply (length: 16)

Type: 129
Code: 0

Checksum: To calculate
Identifier: (612) [same as in the corresponding ICMPv4 Echo

Request]
SequenceNumber: (0) [same as in the corresponding

ICMPv4 Echo Request]

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

0. Create a State in the NUT for TN1

1. TN2 sends “ICMPv4 Echo Request” to TN1

2. TN1 sends “ICMPv6 Echo Reply” to TN2

3. TN2 sends the following packets to TN1:

- “ICMPv4 Information Request”

- “ICMPv4 Information Reply”

- “ICMPv4 Timestamp Request”

- “ICMPv4 Timestamp Reply”

- “ICMPv4 Mask Request”

- “ICMPv4 Mask Reply”

- “ICMPv4 router advertisement”

- “ICMPv4 router solicitation”

- some “ICMPv4 Unknown Informational Messages” with different values “TYPE” and “CODE” for the type
and code fields

Observable Results:

• Step 1: The NUT translates this packet in “ICMPv6 Echo Request” and sends it to TN1. In this packet, the
ICMP checksum has to be adjusted.

• Step 2: The NUT translates this packet in “ICMPv4 Echo Reply” and sends it to TN2. In this packet, the ICMP
checksum has to be adjusted.

• Step 3: These Packets must be silently dropped except for the cases indicated in the table presented hereafter:

ICMPv4 Packet ICMPv6 Corresponding Packet

Type = 0 (Echo Request) Type = 128 (Echo Request)

Type = 8 (Echo Reply) Type = 129 (Echo Reply)

140

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1 1
ICMPv4 Echo Request

<--------------------------- TN2

TN1
ICMPv6 Echo Request

<--------------------------- Step1

TN1
ICMPv6 Echo Reply

---------------------------> 2 TN2

 Step2
ICMPv4 Echo Reply

---------------------------> TN2

TN1

3

• ICMPv4 Information Request

• ICMPv4 Information Reply

• ICMPv4 Timestamp Request

• ICMPv4 Timestamp Reply

• ICMPv4 Mask Request

• ICMPv4 Mask Reply

• ICMPv4 router advertisement

• ICMPv4 router solicitation

• some “ICMPv4 Unknown
Informational Messages” with
different values “TYPE” and
“CODE” for the type and
code fields

<---------------------------
TN2

141

5.3.4.2 ICMPv4 Error Messages with UDP packet in payload

Purpose:

Check translation of ICMPv4 Error Messages with a UDP packet in payload

References:

• [RFC2765], Section 3.3

• [RFC 2765] Page 15 :

“….

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers.”

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

This test checks the correct translation of ICMPv4 Error Messages with a UDP packet included in payload. The
ICMP checksum should be adjusted to account for the address change, going from V4 to V6 addresses. The
inner IP header has also to be translated.

Packets:

• IPv6/UDP (length: 48 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 8
NextHeader: 17

HopLimit : (64) [Same as in IPv4/UDP]
SourceAddress: TN1 IPv6 Global Address or TN2 IPv6

Global NAT-PT Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address or

TN1 IPv6 Global Address

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To calculate

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 / ICMPv6 Error Type 3 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

142

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big /
ICMPv6 Time Exceeded

(length: 56)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 4 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Parameter Problem (length: 56)

Type: 4
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• IPv4/UDP(length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 28

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

 Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT or TN2
IPv4 Address

DestinationAddress: TN2 IPv4 Address or TN1 IPv4 Address
given by The NUT

143

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To Calculate

• ICMPv4 Error Type 3 / ICMPv4 Error Type 11 (length: 56 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 56

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Destination Unreachable
Or

ICMPv4 Time Exceeded
(length: 36)

Type: 3 or 11
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 28)
Data: Same as IPv4/UDP Packet

• ICMPv4 Error Type 12 (length: 56 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 56

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Parameter Problem
(length: 36)

Type: 12
Code: CODE

144

Checksum: To Calculate
Pointer: POINTER

Unused: 0

Payload (length: 28)
Data: Same as IPv4/UDP Packet

Procedure:

0. Create a State in the NUT for TN1.

1. TN2 sends an IPv4/UDP Packet to TN1. The source address is TN2 IPv4 Address and the destination address
is TN1 IPv4 Address given by The NUT.

2. TN1 replies with an IPv6/UDP Packet to TN2. The source address is TN1 IPv6 Global Address and the
destination address is TN2 IPv6 Global NAT-PT Address.

3. Send “ICMPv4 Error Message” from TR to TN1 incrementing type and code. The inner part of these known
packets contains an IPv4/UDP layer. The source address of the inner “IPv4/UDP” packet is TN1 IPv4 Address
given by The NUT and the destination address is TN2 IPv4 Address. Go back to step 1.

Observable Results:

• Step 1: The NUT translates this packet in “IPv6/UDP” and sends it to TN1. In this new packet the UDP
checksum has to be adjusted. The source address is TN2 IPv6 Global NAT-PT Address and the destination
address is TN1 IPv6 Global Address.

• Step 2: The NUT translates this packet in “IPv4/UDP” and sends it to TN2. In this new packet the UDP
checksum has to be adjusted. The source address is TN1 IPv4 Address given by The NUT and the destination
address is TN2 IPv4 Address.

• Step 3: These Packets must be silently dropped except for cases indicated in the table presented hereafter.
The source address of the inner “IPv6/UDP” layer is TN1 IPv6 Global Address and the destination address is
TN2 IPv6 Global NAT-PT Address.

ICMPv4 Packet ICMPv6 Corresponding Packet

Type = 3, Code = 0,1,5,6,7,8,11 or 12 Type = 1, Code = 0 (no route to destination)

Type = 3, Code = 2 (Protocol unreachable error) Type = 4, Code = 1 (unrecognized Next Header type encountered)
and make the Pointer point to the IPv6 Next Header field

Type = 3, Code = 3 (port unreachable) Type = 1, Code = 4 (port unreachable)

Type = 3, Code = 4 (fragmentation needed and DF
set)

Type = 2, Code = 0 (Too Big message) and the The MTU field
needs to be adjusted

Type = 3, Code = 9, 10 (communication with
destination host administratively prohibited)

Type = 1, Code = 1(communication with destination host
administratively prohibited)

Type = 11 (Time Exceeded) Type = 3 (Time Exceeded) and the code field is unchanged

Type = 12 (Parameter Problem) Type = 4 and the pointer need to be adjusted to point to the
corresponding field in the translated include IP header.

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet the UDP checksum has to be adjusted.

145

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1 1
IPv4/UDP

<--------------------------- TN2

TN1
IPv6/UDP

<--------------------------- Step1

TN1
IPv6/UDP

---------------------------> 2 TN2

 Step2
IPv4/UDP

---------------------------> TN2

TN1 3
ICMPv4 Error

<--------------------------- TR

TN1
ICMPv6 Error (Some)

<--------------------------- Step3 TN2

146

5.3.4.3 ICMPv4 Error Messages with TCP packet in payload

Purpose:

Check translation of ICMPv4 Error Messages with a TCP packet in payload

References:

• [RFC2766], Section 5.3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

This test checks the correct translation of ICMPv4 Error Messages with a TCP packet included in payload. The
ICMP checksum should be adjusted to account for the address change, going from V4 to V6 addresses. The
inner IP header has also to be translated.

Packets:

• IPv6/TCP (length: 68 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 28

NextHeader: 6
HopLimit : (64) [Same as in IPv4/TCP]

SourceAddress: TN1 IPv6 Global Address or TN2 IPv6
Global NAT-PT Address

DestinationAddress: TN2 IPv6 Global NAT-PT Address or
TN1 IPv6 Global Address

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: (0)
AcknowledgmentNumber: (0)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (0)
PSHFlag: (0)
RSTFlag: (0)
SYNFlag: 1
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (length: 116 bytes)

IPv6 Header (length: 40)

147

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 76)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 68)
Data: Same as IPv6/TCP Packet

• ICMPv6 Error Type 4 (length: 116 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TR IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Parameter Problem (length: 76)

Type: 4
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 68)
Data: Same as IPv6/TCP Packet

• IPv4/TCP (length: 48 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 48

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6

148

HeaderChecksum: To Calculate
 SourceAddress: TN1 IPv4 Address given by The NUT or TN2

IPv4 Address
DestinationAddress: TN2 IPv4 Address or TN1 IPv4 Address

given by The NUT

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: (0)
AcknowledgmentNumber: (0)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (0)
PSHFlag: (0)
RSTFlag: (0)
SYNFlag: 1
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Error Type 3 (length: 76 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 76

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Destination Unreachable
(length: 56)

Type: 3
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 48)
Data: Same as IPv4/TCP Packet

• ICMPv4 Error Type 12 (length: 76 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

149

TypeOfService: (0)
TotalLength: 76

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TR IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

ICMPv4 Parameter Problem
 (length: 56)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Unused: 0

Payload (length: 48)
Data: Same as IPv4/TCP Packet

Procedure:

0. Create a State in the NUT for TN1.

1. TN2 sends an IPv4/TCP Packet to TN1. The source address is TN2 IPv4 Address and the destination address
is TN1 IPv4 Address given by The NUT. (SYNFlag is set, S/N is set to 1 and A/N is set to 0)

2. TN1 replies with an IPv6/TCP Packet to TN2. The source address is TN1 IPv6 Global Address and the
destination address is TN2 IPv6 Global NAT-PT Address. (SYNFlag and ACKFlag are set, S/N is set to 10 and
A/N is set to 2)

3. Send “ICMPv4 Error Message” from TR to TN1 incrementing type and code. The inner part of these known
packets contains an IPv4/TCP layer. The source address of the inner “IPv4/TCP” packet is TN1 IPv4 Address
given by The NUT and the destination address is TN2 IPv4 Address. Go back to step 1.

Observable Results:

• Step 1: The NUT translates this packet in “IPv6/TCP” and sends it to TN1. In this new packet the TCP
checksum has to be adjusted. The source address is TN2 IPv6 Global NAT-PT Address and the destination
address is TN1 IPv6 Global Address.

• Step 2: The NUT translates this packet in “IPv4/TCP” and sends it to TN2. In this new packet the TCP
checksum has to be adjusted. The source address is TN1 IPv4 Address given by The NUT and the destination
address is TN2 IPv4 Address.

• Step 3: These Packets must be translated according to the table presented hereafter. The source address of
the inner “IPv6/TCP” layer is TN1 IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT
Address.

ICMPv4 Packet ICMPv6 Corresponding Packet

Type = 3, Code = 0,1,5,6,7,8,11 or 12 Type = 1, Code = 0 (no route to destination)

Type = 3, Code = 2 (Protocol unreachable error) Type = 4, Code = 1 (unrecognized Next Header type encountered)
and make the Pointer point to the IPv6 Next Header field

Type = 3, Code = 3 (port unreachable) Type = 1, Code = 4 (port unreachable)

Type = 3, Code = 4 (fragmentation needed and DF
set)

Type = 2, Code = 0 (Too Big message) and the The MTU field
needs to be adjusted

Type = 3, Code = 9, 10 (communication with
destination host administratively prohibited)

Type = 1, Code = 1(communication with destination host
administratively prohibited)

150

Type = 12 (Parameter Problem) Type=4 and the pointer need to be adjusted to point to the
corresponding field in the translated include IP header.

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet the UDP checksum has to be adjusted.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1 1
IPv4/TCP

<--------------------------- TN2

TN1
IPv6/TCP

<--------------------------- Step1

TN1
IPv6/TCP

---------------------------> 2 TN2

 Step2
IPv4/TCP

---------------------------> TN2

TN1 3
ICMPv4 Error

<--------------------------- TR

TN1
ICMPv6 Error (Some)

<--------------------------- Step3 TN2

151

5.3.4.4 ICMPv4 Error Messages with IPv4 options in payload and header

Purpose:

Check translation of ICMPv4 Error Messages with IPv4 options included in payload and header.

References:

• [RFC2765], Section 3.1, 3.3

[RFC 2765], Page 15

“….

The translation of the inner IP header can be done by recursively invoking the function that translated the outer
IP headers.”

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

If IPv4 options are present in the IPv4 packet, they are ignored i.e., there is no attempt to translate them.
However, if an unexpired source route option is present then the packet MUST instead be discarded, and an
ICMPv4 "destination unreachable/source route failed" (Type 3/Code 5) error message SHOULD be returned to
the sender.

This test checks the correct translation of ICMPv4 Error Messages with IPv4 Options included in payload and
header. These Packets owes the following options: No Operation, Strict Source Route expired, Timestamp,
Record Route, End of Option List. The inner part of these packets contains an IPv4/UDP layer with the same
options (No Operation, Strict Source Route expired, Timestamp, Record Route, End of Option List). The ICMP
checksum should be adjusted to account for the address change, going from V4 to V6 addresses. The inner IP
header has also to be translated. These Packets must be translated according to the table presented in the
following. Moreover, IPv4 Options MUST be ignored in the Header translation and in the Payload translation.

Packets:

• IPv6/UDP (length: 48 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 8
NextHeader: 17

HopLimit : (64) [Same as in IPv4/UDP]
SourceAddress: TN1 IPv6 Global Address or TN2 IPv6

Global NAT-PT Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address or

TN1 IPv6 Global Address

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To calculate

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (length: 96 bytes)

IPv6 Header (length: 40)

152

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 56)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 4 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58

HopLimit : (63) [one less than in the corresponding ICMPv4
Error]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

ICMPv6 Parameter Problem (length: 56)

Type: 4
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• IPv4/UDP(length: 60 bytes)

IPv4 Header (length: 52)

Version: 4
IHL: 13

TypeOfService: (0)
TotalLength: 60

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

 Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT or TN2

153

IPv4 Address
DestinationAddress: TN2 IPv4 Address or TN1 IPv4 Address

given by The NUT

NoOperation Option (length:1)
Type: 1

Strict Source Route Option (length:7)
Type: 137
Length: 7
Pointer:8

RouteData: TN2 IPv4 Address

Timestamp Option (length:8)
Type: 68
Length: 8
Pointer:5

Overflow: 0
Flag: 0

Timestamp: 170

NoOperation Option (length:1)
Type: 1

Record Route Option (length:11)
Type: 7

Length: 11
Pointer:4

RouteData: 0.0.0.0
RouteData: 0.0.0.0

EndofOptionList (length:1)
Type: 0

Padding = 000000

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To Calculate

• ICMPv4 Error Type 3 (length: 88 bytes)

IPv4 Header (length: 52)

Version: 4
IHL: 13

TypeOfService: (0)
TotalLength: 88

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Strict Source Route Option (length:7)
Type: 137

154

Length: 7
Pointer:8

RouteData: TN2 IPv4 Address

Timestamp Option (length:8)
Type: 68
Length: 8
Pointer:5

Overflow: 0
Flag: 0

Timestamp: 170

NoOperation Option (length:1)
Type: 1

Record Route Option (length:11)
Type: 7

Length: 11
Pointer:4

RouteData: 0.0.0.0
RouteData: 0.0.0.0

EndofOptionList (length:1)
Type: 0

Padding = 000000

ICMPv4 Destination Unreachable
(length: 36)

Type: 3
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 60)
Data: Same as IPv4/UDP Packet

• ICMPv4 Error Type 12 (length: 88 bytes)

IPv4 Header (length: 52)

Version: 4
IHL: 13

TypeOfService: (0)
TotalLength: 88

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

NoOperation Option (length:1)
Type: 1

Strict Source Route Option (length:7)
Type: 137
Length: 7
Pointer:8

RouteData: TN2 IPv4 Address

Timestamp Option (length:8)

155

Type: 68
Length: 8
Pointer:5

Overflow: 0
Flag: 0

Timestamp: 170

NoOperation Option (length:1)
Type: 1

Record Route Option (length:11)
Type: 7

Length: 11
Pointer:4

RouteData: 0.0.0.0
RouteData: 0.0.0.0

EndofOptionList (length:1)
Type: 0

Padding = 000000

ICMPv4 Parameter Problem
 (length: 36)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Unused: 0

Payload (length: 60)
Data: Same as IPv4/UDP Packet

Procedure:

0. Create a State in the NUT for TN1.

1. TN2 sends an IPv4/UDP Packet to TN1. The source address is TN2 IPv4 Address and the destination address
is TN1 IPv4 Address given by The NUT.

2. TN1 replies with an IPv6/UDP Packet to TN2. The source address is TN1 IPv6 Global Address and the
destination address is TN2 IPv6 Global NAT-PT Address.

3. Send “ICMPv4 Error Message” described in the following from TN2 to TN1. The inner part of these packets
contains an IPv4/UDP layer. Moreover, Options (No Operation, Strict Source Route expired, Timestamp,
Record Route, End of Option List) are present in the IPv4 Header and in the ICMPv4 Header of the ICMPv4
Error Packet. The source address of the inner “IPv4/UDP” packet is TN1 IPv4 Address given by The NUT and
the destination address is TN2 IPv4 Address. Go back to step 1.

Observable Results:

• Step 1: The NUT translates this packet in “IPv6/UDP” and sends it to TN1. In this new packet the UDP
checksum has to be adjusted. The source address is TN2 IPv6 Global NAT-PT Address and the destination
address is TN1 IPv6 Global Address.

• Step 2: The NUT translates this packet in “IPv4/UDP” and sends it to TN2. In this new packet the UDP
checksum has to be adjusted. The source address is TN1 IPv4 Address given by The NUT and the destination
address is TN2 IPv4 Address.

• Step 3: These Packets must be translated according to the table presented hereafter. The source address of
the inner “IPv6/UDP” layer is TN1 IPv6 Global Address and the destination address is TN2 IPv6 Global NAT-PT
Address.

ICMPv4 Packet ICMPv6 Corresponding Packet

Type = 3, Code = 0,1,5,6,7,8,11 or 12 Type = 1, Code = 0 (no route to destination)

Type = 3, Code = 2 (Protocol unreachable error) Type = 4, Code = 1 (unrecognized Next Header type encountered)
and make the Pointer point to the IPv6 Next Header field

156

Type = 3, Code = 3 (port unreachable) Type = 1, Code = 4 (port unreachable)

Type = 3, Code = 4 (fragmentation needed and DF
set)

Type = 2, Code = 0 (Too Big message) and the The MTU field
needs to be adjusted

Type = 3, Code = 9, 10 (communication with
destination host administratively prohibited)

Type = 1, Code = 1(communication with destination host
administratively prohibited)

Type = 12 (Parameter Problem) Type=4 and the pointer need to be adjusted to point to the
corresponding field in the translated include IP header.

When Packet are translated, the options present in the IPv4 Header and in the ICMPv4 Header of the ICMPv4 Error
Packet are removed. Moreover, the translation of the inner IP header can be done by recursively invoking the function
that translated the outer IP headers. Thus, in the inner Part of the translated Packet the UDP checksum has to be
adjusted and the IPv4 Options have been removed.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1 1
IPv4/UDP

<--------------------------- TN2

TN1
IPv6/UDP

<--------------------------- Step1

TN1
IPv6/UDP

---------------------------> 2 TN2

 Step2
IPv4/UDP

---------------------------> TN2

TN1 3
ICMPv4 Error

<--------------------------- TR

TN1
ICMPv6 Error (Some)

<--------------------------- Step3 TN2

157

5.3.5 ICMPv6 Translation
An ICMPv6 Error Packet has sometimes an IPv6 Packet in its payload. In this part we will consider that the translation of
the inner IP header has to be done. Indeed, what is the need to translate an ICMPv6 error message if the inner part is
not also translated?

The ICMPv6 message format is specified by the value of the Type field:

1 Destination unreachable.

2 Packet too big.

3 Time exceeded.

4 Parameter problem.

128 Echo request.

129 Echo reply.

130 Group Membership Query.

131 Group Membership Report.

132 Group Membership Reduction.

133 Router Solicitation.

134 Router Advertisement.

135 Neighbor Solicitation.

136 Neighbor Advertisement.

137 Redirect.

138 Router Renumbering.

139 ICMP Node Information Query.

140 ICMP Node Information Response.

141 Inverse Neighbor Discovery Solicitation Message.

142 Inverse Neighbor Discovery Advertisement Message.

143 Home Agent Address Discovery Request Message.

144 Home Agent Address Discovery Reply Message.

145 Mobile Prefix Solicitation.

146 Mobile Prefix Advertisement.

158

5.3.5.1 ICMPv6 Error Messages with UDP packet in payload

Purpose:

Check Translation of ICMPv6 Error Messages when a UDP packet is included in payload. ICMPv6 error messages are
ICMPv6 messages with a type field between 0 and 254.

References:

• [RFC2765] Section 4.2, 4.3

[RFC 2765] Page 15 :

“….

The translation of the inner IP header can be done by recursively invoking the function that translated the outer
IP headers.”

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1 and TN3

Discussion:

This test checks the correct translation of ICMPv6 Error Messages with a UDP packet included in payload. The
ICMP checksum should be adjusted to account for the address change, going from V6 to V4 addresses. The
inner IP header has also to be translated.

Packets:

• IPv6/UDP (length: 48 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 8
NextHeader: 17
HopLimit : (64)

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN3 IPv6 Global Address

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To Calculate

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

159

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 56)

Type: TYPE
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 3 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Time Exceeded (length: 56)

Type: 3
Code: CODE

Checksum: To Calculate
MTU: (1280)
Unused: 0

Payload (length: 48)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 4 (length: 96 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 56
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Parameter Problem (length: 56)

Type: 4
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Payload (length: 48)
Data: Same as IPv6/UDP Packet

160

• ICMPv6 Unknown Error Message (length: 44 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 4
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 ANY (length: 4)

Type: TYPE
Code: CODE

Checksum: To Calculate
Data: NONE

• IPv4/UDP(length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 28

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64) [Same as in IPv6/UDP]

Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN2 IPv4 Address
DestinationAddress: TN3 IPv4 Address given by The NUT

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To Calculate

• ICMPv4 Error Type 3 / ICMPv4 Error Type 11 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT

161

DestinationAddress: TN2 IPv4 Address

ICMPv4 Destination Unreachable / ICMPv4 Time Exceeded
(length: 16)

Type: TYPE
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 8)
Data: First 8 bytes of IPv4/UDP Packet

• ICMPv4 Error Type 12 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Parameter Problem (length: 16)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Payload (length: 8)
Data: First 8 bytes of IPv4/UDP Packet

Procedure:

0. Create a State in the NUT for TN1 and TN3

1. TN2 sends an “IPv4/UDP” Packet to TN3

2. Send “ICMPv6 Error Message” from TN1 to TN2 incrementing type and code. The inner part of these packets
contains an IPv6/UDP layer. Go back to step 1.

Observable Results:

• Step 1: The NUT must translate this packet in “IPv6/UDP” and forward it to TN1.

• Step 2: These Packets must be silently dropped except for the cases indicated in the table presented hereafter:

ICMPv6 Packet ICMPv4 Corresponding Packet

Type = 1, Code = 0 (no route to destination) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 1 (communication with destination
administratively prohibited)

Type = 3, Code = 10 (communication with destination host
administratively prohibited)

Type = 1, Code = 2 (beyond scope of source address) Type = 3, Code = 1 (host unreachable)

162

Type = 1, Code = 3 (address unreachable) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 4 (port unreachable) Type = 3, Code = 3 (port unreachable)

Type = 2 (Packet Too Big) Type = 3, Code = 4 And ajust the MTU Field

Type = 3 (Time Exceeded) Type = 11, Code = unchanged

Type = 4, Code = 1 Type = 3, Code = 2 (protocol unreachable)

Type = 4, Code <> 1 Type = 12, Code = 0 and Update the Pointer

(if Pointer was 0 -> 0

if Pointer was 4 -> 2

if Pointer was 6 -> 9

if Pointer was 7 -> 8

if Pointer was 8 -> 12

if Pointer was 24 -> 16)

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet the UDP checksum has to be adjusted.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN3 1
IPv4/UDP

<--------------------------- TN2

TN3 (Send
to TN1)

IPv6/UDP
<-------------------------- Step1

TN1
ICMPv6 Error

--------------------------> 2 TN2

 Step2
ICMPv4 Error (Some)

---------------------------> TN2

163

5.3.5.2 ICMPv6 Error Messages with TCP packet in payload

Purpose:

Check Translation of ICMPv6 Error Messages when a TCP packet is included in payload. ICMPv6 error messages are
ICMPv6 messages with a type field between 0 and 254.

References:

• [RFC2766] Section 5.3

[RFC2765] Page 21

“ …

ICMPv6 error messages:

 Destination Unreachable (Type 1)

 Set the Type field to 3. Translate the code field as follows:

 Code 0 (no route to destination): Set Code to 1 (host unreachable).”

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

NONE

Discussion:

This test checks the correct translation of ICMPv6 Error Messages with a TCP packet included in payload. The
ICMP checksum should be adjusted to account for the address change, going from V6 to V4 addresses. The
inner IP header has also to be translated.

Packets:

• IPv6/TCP (length: 68 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 28
NextHeader: 6
HopLimit : (64)

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN3 IPv6 Global Address

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: S/N
AcknowledgmentNumber: A/N

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFlag
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFlag
FINFlag: FINFlag

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

164

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (length: 116 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 76)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 68)
Data: Same as IPv6/TCP Packet

• ICMPv6 Error Type 3 (length: 116 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76
NextHeader: 58
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Time Exceeded (length: 76)

Type: 3
Code: CODE

Checksum: To calculate
MTU: (1280)
Unused: 0

Payload (length: 68)
Data: Same as IPv6/TCP Packet

• ICMPv6 Error Type 4 (length: 116 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 76
NextHeader: 58
HopLimit : (64)

165

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv6 Parameter Problem (length: 76)

Type: 3
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 48)
Data: Same as IPv6/TCP Packet

• IPv4/TCP (length: 48 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 48

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64) [same as in IPv6/TCP]

Protocol: 6
HeaderChecksum: To calculate

SourceAddress: TN2 IPv4 Address
DestinationAddress: TN3 IPv4 Address given by The NUT

TCP (length: 28)

SourcePort: (1000)
DestinationPort: (23)

SequenceNumber: S/N
AcknowledgmentNumber: A/N

DataOffset: 5
Reserverd: (0)
URGFlag: (0)

ACKFlag: ACKFlag
PSHFlag: (0)
RSTFlag: (0)

SYNFlag: SYNFlag
FINFlag: FINFlag

Window: (0)
Checksum: To calculate

UrgentPointer: (0)

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Error Type 3 / ICMPv4 Error Type 11 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0

166

Reserved: 0
DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Destination Unreachable / ICMPv4 Time Exceeded
(length: 16)

Type: TYPE
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 8)
Data: First 8 bytes of IPv4/TCP Packet

• ICMPv4 Error Type 12 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

 SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Parameter Problem (length: 16)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Payload (length: 8)
Data: First 8 bytes of IPv4/TCP Packet

Procedure:

0. Create a State in the NUT for TN1 and TN3

1. TN2 sends an “IPv4/TCP” Packet to TN3

2. Send “ICMPv6 Error Message” from TN1 to TN2 incrementing type and code. The inner part of these packets
contains an IPv6/TCP layer. Go back to step 1.

Observable Results:

• Step 1: The NUT must translate this packet in “IPv6/TCP” and forward it to TN1.

• Step 2: These Packets must be translated according to the table presented hereafter:

ICMPv6 Packet ICMPv4 Corresponding Packet

167

Type = 1, Code = 0 (no route to destination) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 1 (communication with destination
administratively prohibited)

Type = 3, Code = 10 (communication with destination host
administratively prohibited)

Type = 1, Code = 2 (beyond scope of source address) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 3 (address unreachable) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 4 (port unreachable) Type = 3, Code = 3 (port unreachable)

Type = 2 (Packet Too Big) Type = 3, Code = 4 And ajust the MTU Field

Type = 3 (Time Exceeded) Type = 11, Code = unchanged

Type = 4, Code = 1 Type = 3, Code = 2 (protocol unreachable)

Type = 4, Code <> 1 Type = 12, Code = 0 and Update the Pointer

(if Pointer was 0 -> 0

if Pointer was 4 -> 2

if Pointer was 6 -> 9

if Pointer was 7 -> 8

if Pointer was 8 -> 12

if Pointer was 24 -> 16)

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet, the TCP checksum has to be adjusted.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN3 1
IPv4/TCP

<--------------------------- TN2

TN3 (Send
to TN1)

IPv6/TCP
<-------------------------- Step1

TN1
ICMPv6 Error

--------------------------> 2 TN2

 Step2
ICMPv4 Error (Some)

---------------------------> TN2

168

5.3.5.3 ICMPv6 Error Messages with IPv6 options in payload and header

Purpose:

Check Translation of ICMPv6 Error Messages with IPv6 options included in payload and header. ICMPv6 error
messages are ICMPv6 messages with a type field between 0 and 254.

References:

• [RFC2765] Section 4.2, 4.3

• [RFC 2765] Page 15

“….

The translation of the inner IP header can be done by recursively invoking the function that translated the outer
IP headers.”

• [RFC 2765] Section 4.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1 and TN3

Discussion:

This test checks the correct translation of ICMPv6 Error Messages with IPv6 Options included in payload and
header. These Packets owes the following extension headers: Hop by Hop Extension, Destination Option
Header, Routing Header Type 0 with Segments Left = 0, Destination Option Header. The inner part of these
known packets contains an IPv6/UDP layer with the same options (Hop by Hop Extension, Destination Option
Header, Routing Header Type 0 with Segments Left = 0, Destination Option Header). The ICMP checksum
should be adjusted to account for the address change, going from V6 to V4 addresses. The inner IP header has
also to be translated. These Packets must be translated according to the table presented in the following.
Moreover, IPv6 Options MUST be ignored in the Header translation and in the Payload translation.

Packets:

• IPv6/UDP (with Hop by Hop Extension, Destination Option Header, Routing Header Type 0 with Segments Left
= 0, Destination Option Header) (length: 88 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 48
NextHeader: 0
HopLimit : (64)

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN3 IPv6 Global Address

Hop by Hop Option Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Destination Option Header (length: 8)

NextHeader = 43

169

HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Routing Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

Destination Option Header (length: 8)

NextHeader = 17
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv6 Error Type 1 / ICMPv6 Error Type 2 (with Hop by Hop Extension, Destination Option Header, Routing
Header Type 0 with Segments Left = 0, Destination Option Header) (length: 168 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 128
NextHeader: 0
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Hop by Hop Option Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Destination Option Header (length: 8)

NextHeader = 43
HeaderExtLength = 0

170

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Routing Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

Destination Option Header (length: 8)

NextHeader = 58
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

ICMPv6 Destination Unreachable / ICMPv6 Packet Too Big
(length: 96)

Type: TYPE
Code: CODE

Checksum: To calculate
Unused: 0

Payload (length: 88)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 3 (with Hop by Hop Extension, Destination Option Header, Routing Header Type 0 with
Segments Left = 0, Destination Option Header) (length: 168 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 128
NextHeader: 0
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Hop by Hop Option Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Destination Option Header (length: 8)

NextHeader = 43
HeaderExtLength = 0

171

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Routing Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

Destination Option Header (length: 8)

NextHeader = 58
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

ICMPv6 Time Exceeded (length: 96)

Type: 3
Code: CODE

Checksum: To calculate
MTU: (1280)
Unused: 0

Payload (length: 88)
Data: Same as IPv6/UDP Packet

• ICMPv6 Error Type 4 (with Hop by Hop Extension, Destination Option Header, Routing Header Type 0 with
Segments Left = 0, Destination Option Header) (length: 168 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 128
NextHeader: 0
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

Hop by Hop Option Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Destination Option Header (length: 8)

NextHeader = 43
HeaderExtLength = 0

172

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

Routing Header (length: 8)

NextHeader = 60
HeaderExtLength = 0

RoutingType = 0
SegmentsLeft = 0

Type-specificData = 0

Destination Option Header (length: 8)

NextHeader = 58
HeaderExtLength = 0

Opt_PadN (length:6)
OptionType = 1

OptDataLength = 4
Pad = 00000000

ICMPv6 Parameter Problem (length: 96)

Type: 3
Code: CODE

Checksum: To calculate
Pointer: POINTER

Payload (length: 88)
Data: Same as IPv6/UDP Packet

• IPv4/UDP(length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 28

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64) [Same as in IPv6/UDP]

Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN2 IPv4 Address
DestinationAddress: TN3 IPv4 Address given by The NUT

UDP (length: 8)

SourcePort: (1000)
DestinationPort: (1000)

Length: 8
Checksum: To Calculate

• ICMPv4 Error Type 3 / ICMPv4 Error Type 11 (length: 36 bytes)

173

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Destination Unreachable / ICMPv4 Time Exceeded
(length: 16)

Type: TYPE
Code: CODE

Checksum: To Calculate
Unused: 0

Payload (length: 8)
Data: First 8 bytes of IPv4/UDP Packet

• ICMPv4 Error Type 12 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the corresponding ICMPv6 Error]

Protocol: 1
HeaderChecksum: To Calculate

SourceAddress: TN1 IPv4 Address given by The NUT
DestinationAddress: TN2 IPv4 Address

ICMPv4 Parameter Problem (length: 16)

Type: 12
Code: CODE

Checksum: To Calculate
Pointer: POINTER

Payload (length: 8)
Data: First 8 bytes of IPv4/UDP Packet

Procedure:

0. Create a State in the NUT for TN1 and TN3

1. TN2 sends an “IPv4/UDP” Packet to TN3

174

2. Send “ICMPv6 Error Message” described in the following from TN1 to TN2. These Packets owes the following
extension headers: Hop by Hop Extension, Destination Option Header, Routing Header Type 0 with Segments
Left = 0, Destination Option Header. The inner part of these known packets contains an IPv6/UDP layer with
the same options (Hop by Hop Extension, Destination Option Header, Routing Header Type 0 with Segments
Left = 0, Destination Option Header). Go back to step 1.

Observable Results:

• Step 1: The NUT must translate this packet in “IPv6/UDP” and forward it to TN1.

• Step 2: These Packets must be translated according to the table presented hereafter. Moreover, IPv6 Options
MUST be ignored in the Header translation and in the Payload translation.

ICMPv6 Packet ICMPv4 Corresponding Packet

Type = 1, Code = 0 (no route to destination) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 1 (communication with destination
administratively prohibited)

Type = 3, Code = 10 (communication with destination host
administratively prohibited)

Type = 1, Code = 2 (beyond scope of source address) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 3 (address unreachable) Type = 3, Code = 1 (host unreachable)

Type = 1, Code = 4 (port unreachable) Type = 3, Code = 3 (port unreachable)

Type = 2 (Packet Too Big) Type = 3, Code = 4 And ajust the MTU Field

Type = 3 (Time Exceeded) Type = 11, Code = unchanged

Type = 4, Code = 1 Type = 3, Code = 2 (protocol unreachable)

Type = 4, Code <> 1 Type = 12, Code = 0 and Update the Pointer

(if Pointer was 0 -> 0

if Pointer was 4 -> 2

if Pointer was 6 -> 9

if Pointer was 7 -> 8

if Pointer was 8 -> 12

if Pointer was 24 -> 16)

The translation of the inner IP header can be done by recursively invoking the function that translated the outer IP
headers. Thus, in the inner part of the translated Packet, the TCP checksum has to be adjusted.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN3 1
IPv4/UDP

<--------------------------- TN2

TN3 (Send
to TN1)

IPv6/UDP
<-------------------------- Step1

TN1
ICMPv6 Error

--------------------------> 2 TN2

 Step2
ICMPv4 Error (Some)

---------------------------> TN2

175

5.3.6 ICMPv4 Error Generation

5.3.6.1 TTL set to 0 or 1 & ICMPv4 Time Exceeded Message

Purpose:

Check that the NUT discards packets it receives with TT set to 0 or 1. In this case the NUT MUST send an ICMPv4 TTL
exceeded packet.

References:

• [RFC2765], Section 3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

This test checks that packet is correctly discarded when TTL is set to 0. Moreover, the NUT SHOULD send an
ICMPv4 "ttl exceeded" error.

Packets:

• IPv4/UDP (with TTL = 1 or 0) (length: 36 bytes)

IPv4 Header (length: 28)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: 0 or 1
Protocol: 17

HeaderChecksum: To Calculate
SourceAddress: TN2 IPv6 Global NAT-PT Address

DestinationAddress: TN1 IPv4 Address given by The NUT

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• ICMPv4 Time Exceeded (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0

176

TotalLength: 36
Identifier: XXXXX

Reserved: 0
DF: 1
MF: 0

FragmentOffset: 0
TTL: XXXXX
Protocol: 41

HeaderChecksum: XXXXX
 SourceAddress: NUT IPv4 Address Link 2

DestinationAddress: TN2 IPv6 Global NAT-PT Address

ICMPv4 Time Exceeded (length: 16)

Type: 11
Code: 0

Checksum: To Calculate
Unused: 0

Payload (length: 28)
Data: the IPv4 Header of the invoking packet + the First 8

bytes of the corresponding IPv4/UDP

Procedure:

0. Create a State in the NUT for TN1

1. TR forwards an “IPv4/UDP” Packet from TN2 to TN1 with TTL = 0.

2. TR forwards an “IPv4/UDP” Packet from TN2 to TN1 with TTL = 1.

Observable Results:

• Step 1: The NUT must send an “ICMPv4 Time Exceeded” Code 0 Packet to TN2.

• Step 2: The NUT must send an “ICMPv4 Time Exceeded” Code 0 Packet to TN2. In the Payload, the TTL of
the offending packet is set to 0 or 1.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1 1
IPv4/UDP (TTL == 0)

<--------------------------- TN2

Step1
ICMPv4 Time Exceeded

---------------------------> TN2

TN1 2
IPv4/UDP (TTL == 1)

<--------------------------- TN2

Step2
ICMPv4 Time Exceeded

---------------------------> TN2

177

5.3.7 MTU Handling & Fragmentation

5.3.7.1 Translation of Fragmented packets

Purpose:

Check that IPv4 fragmented packets are correctly translated

References:

• [RFC2765] Section 3.1

“If there is need to add a fragment header (the DF bit is not set or the packet is a fragment) the header fields
are set as above with the following exceptions:

IPv6 fields:

- Payload Length: Total length value from IPv4 header, plus 8 for the fragment header, minus the
size of the IPv4 header and IPv4 options, if present.

- Next Header: Fragment Header (44)

Fragment header fields:

- Next Header: Protocol field copied from IPv4 header.

- Fragment Offset: Fragment Offset copied from the IPv4 header.

- M flag: More Fragments bit copied from the IPv4 header.

- Identification: The low-order 16 bits copied from the Identification field in the IPv4 header. The
high-order 16 bits set to zero.”

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

Check that IPv4 fragmented packets are correctly translated

Packets:

• IPv4/UDP (1st Fragment) (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 36

Identifier: (0xFFEFFF03)
Reserved: (0)

DF: 1
MF: 1

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

178

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv4/UDP (2nd Fragment) (length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 28

Identifier: (0xFFEFFF03)
Reserved: (0)

DF: 1
MF: 0

FragmentOffset: 2 (in 8-octet units)
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv6/UDP (1st Fragment) (length: 64 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 24

NextHeader: 44
HopLimit : (63) [one less than in the corresponding

IPv4/UDP (1st Fragment)]
SourceAddress: TN2 IPv6 Global NAT-PT Address

DestinationAddress: TN1 IPv6 Global Address

Fragment Header (length:8)

NextHeader: 17
Reserved1: 0

FragmentOffset: 0
Reserved2: 0

Mflag: 1
Identification: (0xFF03)

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

179

• IPv6/UDP (2nd Fragment) (length: 56 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 16

NextHeader: 44
HopLimit : (63) [one less than in the corresponding

IPv4/UDP (2nd Fragment)]
SourceAddress: TN2 IPv6 Global NAT-PT Address

DestinationAddress: TN1 IPv6 Global Address

Fragment Header (length:8)

NextHeader: 17
Reserved1: 0

FragmentOffset: 2 (in 8-octet units)
Reserved2: 0

Mflag: 1
Identification: (0xFF03)

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

0. Create a State in the NUT for TN1

1. TN2 sends an “IPv4/UDP (1st Fragment)” Packet to TN1 through The NUT

2. TN2 sends an “IPv4/UDP (2nd Fragment)” Packet to TN1 through The NUT

Observable Results:

• Step 1: The NUT translates this packet in “IPv6/UDP (1st Fragment)” and sends it to TN1. In this new packet
the UDP checksum has to be adjusted.

• Step 2: The NUT translates this packet in “IPv6/UDP (2st Fragment)” and sends it to TN1.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1 1
IPv4/UDP (1st Fragment)

<--------------------------- TN2

TN1
IPv6/UDP (1st Fragment)

<-------------------------- Step1

TN1 2
IPv4/UDP (2nd Fragment)

<--------------------------- TN2

TN1
IPv6/UDP (2nd Fragment)

<-------------------------- Step2

180

5.3.7.2 IPv4/UDP Fragmented Packet without UDP checksum

Purpose:

Check translation of IPv4/UDP Fragmented Packet with UDP checksum set to 0.

References:

• [RFC2765], Section 3.2

• [RFC2766], Section 5.3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

When the checksum of a V4 UDP packet is set to zero, NAT-PT MUST evaluate the checksum in its entirety for
the V6-translated UDP packet. If a V4 UDP packet with a checksum of zero arrives in fragments, NAT-PT
MUST await all the fragments until they can be assembled into a single non-fragmented packet and evaluate
the checksum prior to forwarding the translated V6 UDP packet.

Packets:

• IPv4/UDP 1 (1st Fragment) (length: 540 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 540

Identifier: (0xFFEFFF04)
Reserved: (0)

DF: 1
MF: 1

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

UDP (length: 520)

SourcePort: (1000)
DestinationPort: (1000)

Length: 536
Checksum: 0

Payload (length: 512)
512 bytes of Data

• IPv4/UDP 2 (2nd Fragment) (length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)

181

TotalLength: 28
Identifier: (0xFFEFFF04)

Reserved: (0)
DF: 1
MF: 1

FragmentOffset: 520 (in 8-octet units)
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

Payload (length: 8)
8 bytes of Data

• IPv4/UDP 3 (Last Fragment) (length: 28 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 28

Identifier: (0xFFEFFF04)
Reserved: (0)

DF: 1
MF: 0

FragmentOffset: 528 (in 8-octet units)
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

Payload (length: 8)
8 bytes of Data

• IPv6/UDP (length: 584 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 544

NextHeader: 44
HopLimit : (63) [one less than in the corresponding

IPv4/UDP (1st Fragment)]
SourceAddress: TN2 Global IPv6 NAT-PT Address

DestinationAddress: TN1 Global IPv6 Address

Fragment Header (length:8)

NextHeader: 17
Reserved1: 0

FragmentOffset: 0
Reserved2: 0

Mflag: 0
Identification: (0xFF04)

UDP (length: 536)

182

SourcePort: (1000)
DestinationPort: (1000)

Length: 536
Checksum: Calculated UDP Checksum

Payload (length: 528)
Data: The 528 bytes of data of IPv4/UDP 1,2 & 3

Procedure:

0. Create a State in the NUT for TN1

1. TN2 Sends “IPv4/UDP 1 (1st Fragment)”, “IPv4/UDP 2 (2nd Fragment)”, “IPv4/UDP 3 (last Fragment)” to TN1.
The UDP Checksum is set to 0 in “IPv4/UDP 1”.

Observable Results:

• Step 1: NAT-PT MUST await all the fragments until they can be assembled into a single non-fragmented
packet and evaluate the checksum prior to forwarding the translated “IPv6/UDP” packet to TN1. In this packet,
the UDP checksum has to be calculated.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1

TN1

TN1 1

IPv4/UDP (1st Fragment)
<---------------------------

IPv4/UDP (2nd Fragment)
<---------------------------

IPv4/UDP (Last Fragment)
<---------------------------

TN2

TN2

TN2

TN1
IPv6/UDP

<-------------------------- Step1

183

5.3.7.3 DF set to 0 and Fragmentation of IPv6 packets

Purpose:

Check that IPv4 packet with DF not set is correctly translated. The IPv6 resulting packet must not exceeds 1280 bytes. If
the resulting packet exceeds 1280 bytes, it has to be fragmented prior to be forwarded. Even when this packet is not
larger than 1280 bytes, a fragment header is added to the IPv6 translated Packet.

References:

• [RFC2765], Section 3.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

This test checks that IPv4 packet with DF not set is correctly translated. The IPv6 resulting packet must not
exceed the IPv6 Minimum MTU, 1280 bytes. If the resulting packet exceeds 1280 bytes, it has to be
fragmented prior to be forwarded. Even when this packet is not larger than 1280 bytes, a fragment header is
added to the IPv6 translated Packet.

Packets

• IPv4/UDP 1 (It will result in an IPv6 Packet larger than 1280 bytes) (length: 1436 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 1436

Identifier: (0xFFEFFF05)
Reserved: 0

DF: 0
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

UDP (length: 1416)

SourcePort: (1000)
DestinationPort: (1000)

Length: 1416
Checksum: To Calculate

Payload (length: 8)
Data: 1408 Bytes of data

• IPv4/UDP 2 (length: 36 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)

184

TotalLength: 36
Identifier: (0xFFEFFF06)

Reserved: 0
DF: 0
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To Calculate

SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

• IPv6/UDP 1 (1st Fragment) (length: 1280 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 1240

NextHeader: 44
HopLimit : (63) [one less than in the IPv4/UDP 1]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

Fragment Header (length:8)

NextHeader: 17
Reserved1: 0

FragmentOffset: 0
Reserved2: 0

Mflag: 1
Identification: (0xFF05)

UDP (length: 1232)

SourcePort: (1000)
DestinationPort: (1000)

Length: 1416
Checksum: To Calculate

Payload (length: 1224)
Data: the first 1224 Bytes of data of IPv4/UDP 1

• IPv6/UDP 2 (2nd Fragment) (length: 224 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 184

185

NextHeader: 44
HopLimit : (63) [one less than in the IPv4/UDP 1]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

Fragment Header (length:8)

NextHeader: 17
Reserved1: 0

FragmentOffset: 154
Reserved2: 0

Mflag: 0
Identification: (0xFF05)

Payload (length: 176)
Data: the last 176 Bytes of data of IPv4/UDP 1

• IPv6/UDP 3 (with Fragment Header) (length: 64 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 24

NextHeader: 44
HopLimit : (63) [one less than in the IPv4/UDP 2]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

Fragment Header (length:8)

NextHeader: 17
Reserved1: 0

FragmentOffset: 0
Reserved2: 0

Mflag: 0
Identification: (0xFF06)

UDP (length: 16)

SourcePort: (1000)
DestinationPort: (1000)

Length: 16
Checksum: To Calculate

Payload (length: 8)
Data: (01234567 89abcdef)

Procedure:

0. Create a State in the NUT for TN1

1. TN2 sends “IPv4/UDP 1” (It will result in an IPv6 Packet larger than 1280 bytes) with DF=0 to TN1

2. TN2 sends “IPv4/UDP 2” with DF=0 to TN1

Observable Results:

• Step 1: The NUT translates this packet in “IPv6/UDP 1 (1st Fragment)”, “IPv6/UDP 2 (2nd Fragment)” and
sends it to TN1. In the packet “IPv6/UDP 1”, the UDP checksum has to be adjusted.

• Step 2: The NUT translates this packet in “IPv6/UDP 3” with a Fragment Header and sends it to TN1. In this
resulting packet, the UDP checksum has to be adjusted.

186

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

TN1 1
IPv4/UDP 1 (DF == 0)

<--------------------------- TN2

TN1

TN1

IPv6/UDP 1 (1st Fragment)
<--------------------------

IPv6/UDP 2 (2nd Fragment)
<--------------------------

Step1

TN1 2
IPv4/UDP 2 (DF == 0)

<--------------------------- TN2

TN1
IPv6/UDP 3

<-------------------------- Step2

187

5.3.8 FTP-ALG
The use of IP addresses and TCP Ports in FTP Packets with commands such as PORT, PASV, EPRT, EPSV, involve
the need of having an FTP-ALG located on the NUT to facilitate transparent FTP between v4 and v6 nodes. This part
give some conformance tests to check the correct translation of FTP packets from a v4 (TN2) to a v6 (TN1) node.

Each test will begin with the establishment of a passive TCP connection to the FTP server TN1 using port 21.

This is not really mandatory but because each packet going into the v6 network has to go through the NUT, this can lead
to some problems. Indeed the NUT can keep the status of live TCP connection and by this way, rejects all TCP packets
when no state is available in the router. As a consequence, each test will have to end with the closing of this TCP
connection.

5.3.8.1 PORT

Purpose:

Check the correct translation of PORT command into EPRT command

References:

• [RFC2766] Section 6.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A FTP-ALG MUST be available on the NUT

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

According to [RFC2428], the FTP commands PORT and PASV are replaced with EPRT and EPSV.
Nevertheless because a v4 node may not have the EPRT and EPSV commands implemented, it may originates
an FTP session using PORT or PASV command.

Thus, in active mode FTP between TN2 and TN1 and from the IPv4 side, the client (TN2) connects from a
random unprivileged port (N > 1024) to the FTP server's command port 21. Then, the client starts listening to
port N+1 and sends the FTP command PORT N+1 to the FTP server. The server will then connect back to the
client's specified data port from its local data port, which is port 20.

The FTP-ALG has to translate this PORT command into EPRT command before to forward it to the v6 node
TN1.

Packets:

• IPv4/TCP/FTP PORT (length: 67 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 67

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

TCP (length: 20)

188

SourcePort: (49226)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

FTP – PORT Command (length: 27)

Request: TN2_FTP_PORT_v4

• IPv6/TCP/FTP EPRT(length: 105 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 65

NextHeader: 6
HopLimit : (63) [one less than in the IPv4/TCP/FTP PORT]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

TCP (length: 20)

SourcePort: (49226)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

FTP EPRT Command (length: 45)

Request: TN2_FTP_EPRT_v6

TN2_FTP_PORT_v4 : The syntax is “PORT<space>a1,a2,a3,a4,p1,p2”. It Specifies the host TN2 and
port to which the server should connect for the next file transfer. This is interpreted as IP address
a1.a2.a3.a4, port p1*256+p2. In our specific case we have “PORT 131,254,201,1,192,75”.

189

TN2_FTP_EPRT_v6 : The EPRT command allows for the specification of an extended address for the
data connection. The extended address MUST consist of the network protocol as well as the network
and transport addresses. The syntax is “EPRT<space><d><net-prt><d><net-addr><d><tcp-port><d>”
where:

§ <d> is a delimiter character (the character "|" is recommended).

§ <net-prt> is the protocol (value is 2 for IPv6)

§ <net-addr> is TN2 IPv6 Global NAT-PT Address

§ <tcp-port> is the same than in the corresponding IPv4/TCP/FTP packet.

In our specific case we have “EPRT |2|3ffe:501:41c:c1ad::83fe:c901|49227|”.

Procedure:

0. Create a State in the NUT for TN1.

1. Establish a TCP connection from TN2 port 49226 to TN1 port 21. as defined in 5.3.3.2.

2. TN2 sends “IPv4/FTP/TCP PORT” packet to TN1

3. Establish a TCP connection from TN1 port 20 to TN2 port 49227 as defined in 5.1.2.1.

4. Close the TCP connection from TN1 port 20 to TN2 port 49227 as defined in 5.1.2.1.

5. Close the TCP connection from TN2 port 49226 to TN1 port 21 as defined in 5.3.3.2

Observable Results:

• Step 1: The FTP-ALG on the NUT translates the packet in an “IPv6/TCP/FTP EPRT” packet.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

1: Establishement of a TCP connection from TN2 port 49226 to TN1 port 21

TN1 2
IPv4/FTP/TCP PORT

<--------------------------- TN2

TN1
IPv6/FTP/TCP EPRT

<---------------------------
Step2

TN2

3: Establishement of a TCP connection from TN1 port 20 to TN2 port 49227

4: Closing of the TCP connection from TN1 port 20 to TN1 port 49227

5: Closing of the TCP connection from TN2 port 49226 to TN1 port 21

190

5.3.8.2 PASV

Purpose:

Check the correct translation of PASV command into EPSV command

References:

• [RFC2766] Section 6.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A FTP-ALG MUST be available on the NUT

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

According to [RFC2428], the FTP commands PORT and PASV are replaced with EPRT and EPSV.
Nevertheless because a v4 node may not have the EPRT and EPSV commands implemented, it may originates
an FTP session using PORT or PASV command.

In passive mode FTP between TN2 and TN1 and from the IPv4 side, the client (TN2) initiates both connections
(data and command) to the server, solving the problem of firewalls filtering the incoming data port connection to
the client from the server. When opening an FTP connection, the client opens two random unprivileged ports
locally (N > 1024 and N+1). The first port contacts the server on port 21, but instead of then issuing a PORT
command and allowing the server to connect back to its data port, the client will issue the PASV command. The
result of this is that the server then opens a random unprivileged port (P > 1024) and sends the PORT P
command back to the client. The client then initiates the connection from port N+1 to port P on the server to
transfer data.

The FTP-ALG has to translate this PASV command into EPSV command before to forward it to the v6 node
TN1.

Packets:

• IPv4/TCP/FTP PASV (length: 46 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 46

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

TCP (length: 20)

SourcePort: (49326)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)

191

PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

FTP – Command PASV (length: 6)

Request: “PASV”

• IPv4/TCP/FTP PASV Response (length: 90 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 90

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the IPv6/TCP/FTP EPSV

Response]
Protocol: 6

HeaderChecksum: To Calculate
 SourceAddress: TN1 IPv4 Address given by The NUT

DestinationAddress: TN2 IPv4 Address

TCP (length: 20)

SourcePort: 21
DestinationPort: (49326)
SequenceNumber: (1)

AcknowledgmentNumber: (2)
DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

FTP – Response PASV (length: 50)

Response: TN1_FTP_PASV_v4

• IPv6/TCP/FTP EPSV Response (length: 108 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 68

192

NextHeader: 6
HopLimit : (64)

 SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

TCP (length: 20)

SourcePort: 21
DestinationPort: (49326)
SequenceNumber: (1)

AcknowledgmentNumber: (2)
DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

FTP – Response EPSV (length: 48)

Response: TN1_FTP_EPSV_v6

• IPv6/TCP/FTP EPSV(length: 66 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 26

NextHeader: 6
HopLimit : (63) [one less than in the IPv4/TCP/FTP PASV]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

TCP (length: 20)

SourcePort: (49326)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

FTP - Command EPSV (length: 6)

Request: “EPSV”

193

TN1_FTP_PASV_v4: The full response syntax is “227 Entering Passive Mode (a1,a2,a3,a4,p1,p2)”
where a1.a2.a3.a4 is the IP address and p1*256+p2 is the port number. It Specifies the host TN1 and
port (for exemple 55555) to which the client should connect for the next file transfer. In our specific
case we have “227 Entering Passive Mode (131,254,199,90,217,3)”.

TN1_FTP_EPSV_v6 : The EPSV response has the following full syntax: “229 Entering Extended
Passive Mode (<d><d><d><tcp-port><d>)” where:

§ <d> is a delimiter character (the character "|" is recommended).

§ <tcp-port> is the same than in the corresponding IPv4/TCP/FTP packet.

In our specific case we have “229 Entering Extended Passive Mode (|||55555|)”.

Procedure:

0. Create a State in the NUT for TN1

1. Establish a TCP connection from TN2 port 49326 to TN1 port 21 as defined in 5.3.3.2.

2. TN2 sends “IPv4/FTP/TCP PASV” packet to TN1

3. TN1 sends “IPv6/FTP/TCP PASV Response” packet to TN2 (giving TCP port 55555)

4. Establish a TCP connection from TN2 port 49327 to TN1 port 55555 as defined in 5.3.3.2..

5. Close the TCP connection from TN2 port 49327 to TN1 port 55555 as defined in 5.3.3.2.

6. Close the TCP connection from TN2 port 49326 to TN1 port 21 as defined in 5.3.3.2

Observable Results:

• Step 2: The FTP-ALG on the NUT translates the packet in an “IPv6/TCP/FTP EPSV” packet and forwards it to
TN1.

• Step 3: The FTP-ALG on the NUT translates the packet in an “IPv4/TCP/FTP EPSV Response” packet and
forwards it to TN2.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

1: Establishement of a TCP connection from TN2 port 49326 to TN1 port 21

TN1 2
IPv4/FTP/TCP PASV

<--------------------------- TN2

TN1
IPv6/FTP/TCP EPSV

<--------------------------- Step2 TN2

TN1
IPv6/FTP/TCP PASV Response

---------------------------> 3 TN2

TN1 Step3
IPv4/FTP/TCP EPSV Response

---------------------------> TN2

4: Establishement of a TCP connection from TN2 port 49327 to TN1 port 55555

5: Closing of the TCP connection from from TN2 port 49327 to TN1 port 55555

6: Closing of the TCP connection from TN2 port 49326 to TN1 port 21

194

5.3.8.3 EPRT

Purpose:

Check the correct translation of EPRT command

References:

• [RFC2766] Section 6.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A FTP-ALG MUST be available on the NUT

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

According to [RFC2428], the FTP commands PORT and PASV are replaced with EPRT and EPSV.

Thus, in active mode FTP between TN2 and TN1 and from the IPv4 side, the client (TN2) connects from a
random unprivileged port (N > 1024) to the FTP server's command port 21. Then, the client starts listening to
port N+1 and sends the FTP command EPRT with port N+1 to the FTP server. The server will then connect
back to the client's specified data port from its local data port, which is port 20.

The FTP-ALG has to translate this EPRT command before to forward it to the v6 node TN1.

Packets:

• IPv4/TCP/FTP EPRT (length: 70 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 70

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

TCP (length: 20)

SourcePort: (49426)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

195

FTP – Command EPRT (length: 30)

Request: TN2_FTP_EPRT_v4

• IPv6/TCP/FTP EPRT(length: 105 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 65

NextHeader: 6
HopLimit : (63) [one less than in the IPv4/TCP/FTP EPRT]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

TCP (length: 20)

SourcePort: (49426)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

FTP – command EPRT (length: 45)

Request: TN2_FTP_EPRT_v6

TN2_FTP_EPRT_v6 : The EPRT command allows for the specification of an extended address for the
data connection. The extended address MUST consist of the network protocol as well as the network
and transport addresses. The syntax is “EPRT<space><d><net-prt><d><net-addr><d><tcp-port><d>”
where:

§ <d> is a delimiter character (the character "|" is recommended).

§ <net-prt> is the protocol (value is 2 for IPv6)

§ <net-addr> is TN2 IPv6 Global NAT-PT Address

§ <tcp-port> is the same than in the corresponding IPv4/TCP/FTP packet.

In our specific case we have “EPRT |2|3ffe:501:41c:c1ad::83fe:c901|49427|”.

TN2_FTP_EPRT_v4: The syntax is similar to the previous one except that:

§ <net-prt> is the protocol IPv4 (value is 1 for IPv4)

§ <net-addr> is TN2 IPv4 Address

In our specific case we have “EPRT |1|131.254.201.1|49427|”.

Procedure:

0. Create a State in the NUT for TN1

1. Establish a TCP connection from TN2 port 49426 to TN1 port 21 as defined in 5.3.3.2.

196

2. TN2 sends “IPv4/FTP/TCP EPRT” packet to TN1

3. Establish a TCP connection from TN1 port 20 to TN2 port 49427 as defined in 5.1.2.1.

4. Close the TCP connection from TN1 port 20 to TN2 port 49427 as defined in 5.1.2.1.

5. Close the TCP connection from TN2 port 49426 to TN1 port 21 as defined in 5.3.3.2

Observable Results:

• Step 2: The FTP-ALG on the NUT translates the packet in an “IPv6/TCP/FTP EPRT” packet.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

1: Establishement of a TCP connection from TN2 port 49426 to TN1 port 21

TN1 2
IPv4/FTP/TCP EPRT

<--------------------------- TN2

TN1
IPv6/FTP/TCP EPRT

<---------------------------
Step2

TN2

3: Establishement of a TCP connection from TN1 port 20 to TN2 port 49427

4: Closing of the TCP connection from TN1 port 20 to TN1 port 49427

5: Closing of the TCP connection from TN2 port 49426 to TN1 port 21

197

5.3.8.4 EPSV

Purpose:

Check the correct translation of EPSV command

References:

• [RFC2766] Section 6.1

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A FTP-ALG MUST be available on the NUT

Test Requirement:

• Create a State in the NUT for TN1

Discussion:

According to [RFC2428], the FTP commands PORT and PASV are replaced with EPRT and EPSV.

In passive mode FTP between TN2 and TN1 and from the IPv4 side, the client (TN2) initiates both connections
(data and command) to the server, solving the problem of firewalls filtering the incoming data port connection to
the client from the server. When opening an FTP connection, the client opens two random unprivileged ports
locally (N > 1024 and N+1). The first port contacts the server on port 21, but instead of then issuing an EPRT
command and allowing the server to connect back to its data port, the client will issue the EPSV command. The
result of this is that the server then opens a random unprivileged port (P > 1024) and sends the EPRT P
command back to the client. The client then initiates the connection from port N+1 to port P on the server to
transfer data.

The FTP-ALG has to translate this EPSV command before to forward it to the v6 node TN1.

Packets:

• IPv4/TCP/FTP EPSV (length: 46 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 46

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 6
HeaderChecksum: To Calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by The NUT

TCP (length: 20)

SourcePort: (49526)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)

198

FINFlag: (0)
Window: (65535)

Checksum: To calculate
UrgentPointer: (0)

FTP – Command EPSV (length: 6)

Request: “EPSV”

• IPv4/TCP/FTP EPSV Response (length: 88 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: 0
TotalLength: 88

Identifier: (0)
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the IPv6/TCP/FTP EPSV

Response]
Protocol: 6

HeaderChecksum: To Calculate
 SourceAddress: TN1 IPv4 Address given by The NUT

DestinationAddress: TN2 IPv4 Address

TCP (length: 20)

SourcePort: 21
DestinationPort: (49526)
SequenceNumber: (1)

AcknowledgmentNumber: (2)
DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)

Window: (65535)
Checksum: To calculate

UrgentPointer: (0)

FTP – Response EPSV (length: 48)

Response: TN1_FTP_EPSV_v4

• IPv6/TCP/FTP EPSV Response (length: 108 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 68

NextHeader: 6
HopLimit : (64)

199

 SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

TCP (length: 20)

SourcePort: 21
DestinationPort: (49526)
SequenceNumber: (1)

AcknowledgmentNumber: (2)
DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

FTP – Response EPSV (length: 48)

Response: TN1_FTP_EPSV_v6

• IPv6/TCP/FTP EPSV(length: 66 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)

FlowLabel: 0
PayloadLength: 26

NextHeader: 6
HopLimit : (63) [one less than in the IPv4/TCP/FTP EPSV]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

TCP (length: 20)

SourcePort: (49526)
DestinationPort: 21

SequenceNumber: (1)
AcknowledgmentNumber: (2)

DataOffset: 5
Reserverd: (0)
URGFlag: (0)
ACKFlag: (1)
PSHFlag: (1)
RSTFlag: (0)
SYNFlag: (0)
FINFlag: (0)
Window: (0)

Checksum: To calculate
UrgentPointer: (0)

FTP – Command EPSV (length: 6)

Request: “EPSV”

TN1_FTP_EPSV_v6 : The EPSV response has the following full syntax: “229 Entering Extended
Passive Mode (<d><d><d><tcp-port><d>)” where:

200

§ <d> is a delimiter character (the character "|" is recommended).

§ <tcp-port> is the same than in the corresponding IPv4/TCP/FTP packet.

In our specific case we have “229 Entering Extended Passive Mode (|||55555|)”.

TN1_FTP_EPSV_v4 : The syntax is similar to the previous one.

Procedure:

0. Create a State in the NUT for TN1

1. Establish a TCP connection from TN2 port 49526 to TN1 port 21 as defined in 5.3.3.2.

2. TN2 sends “IPv4/FTP/TCP EPSV” packet to TN1

3. TN1 sends “IPv6/FTP/TCP EPSV Response” packet to TN2 (giving TCP port 55555)

4. Establish a TCP connection from TN2 port 49527 to TN1 port 55555 as defined in 5.3.3.2

5. Close the TCP connection from TN2 port 49527 to TN1 port 55555 as defined in 5.3.3.2

6. Close the TCP connection from TN2 port 49526 to TN1 port 21 as defined in 5.3.3.2

Observable Results:

• Step 2: The FTP-ALG on the NUT translates the packet in an “IPv6/TCP/FTP EPSV” packet and forwards it to
TN1.

• Step 3: The FTP-ALG on the NUT translates the packet in an “IPv4/TCP/FTP EPSV Response” packet and
forwards it to TN2.

Test Sequence:

Tester Link1 [IPv6] RUT Link2 [IPv4] (Forwarded by
TR)

Tester(IPv6)

1: Establishement of a TCP connection from TN2 port 49526 to TN1 port 21

TN1 2
IPv4/FTP/TCP EPSV

<--------------------------- TN2

TN1
IPv6/FTP/TCP EPSV

<--------------------------- Step2 TN2

TN1
IPv6/FTP/TCP EPSV Response

---------------------------> 3 TN2

TN1 Step3
IPv4/FTP/TCP EPSV Response

---------------------------> TN2

4: Establishement of a TCP connection from TN2 port 49527 to TN1 port 55555

5: Closing of the TCP connection from from TN2 port 49527 to TN1 port 55555

6: Closing of the TCP connection from TN2 port 49526 to TN1 port 21

201

5.3.9 DNS-ALG (*)

[RFC2874] defines A6 DNS records. However, because this RFC is in BCP status and because A6 records are not
deployed we will put aside this kind of records to focus on AAAA records only.

Topology:

In this part, TN1 will be considered as the DNS server from the IPv6 Side and TR will be the DNS server of the
outside world.

• TN1 DNS and Reverse DNS Entries will be the following:

Entries DNS

Tn1bis.irisa.fr

a3a3.fe00.00ff.0200.0100.ffff.501.3ffe.ip6.int

TN1Bis: 3ffe:501:ffff:100:200:ff:fe00:a3a3

tn1bis.irisa.fr

• TR DNS and Reverse DNS Entries will be the following:

Entries DNS

Tn2.irisa.fr

1.201.254.131.in-addr.arpa

TN2: 131.254.201.1

tn2.irisa.fr

5.3.9.1 DNS Query & DNS Response (*)

Purpose:

Check the correct translation of DNS query and response packet.

References:

• [RFC2766] Pages 9, 10

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A DNS-ALG MUST be available on the NUT

Test Requirement:

• Create a State in the NAT-PT Box for TN1

Topology:

In this test case, TN1 will be considered as the DNS server from the IPv6 Side.

Discussion:

If TN2 do a name look-up A for TN1bis, a DNS-ALG available on the NUT MUST change the query from A to
AAAA before to forward it to TN1. Moreover, in the response the DNS-ALG once again intercepts the DNS
packet and MUST:

- Translate DNS responses for "AAAA"records into "A" records

- Replace the V6 address resolved by the V6 DNS with the V4 address internally assigned by the NAT-PT
router.

202

Packets:

• IPv6/UDP/DNS Query (length: 86 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 46
NextHeader: 17

HopLimit : (63) [one less than in the IPv4/UDP/DNS Query
Packet]

SourceAddress: TN2 IPv6 Global NAT-PT Address
DestinationAddress: TN1 IPv6 Global Address

UDP (length: 46)

SourcePort: (1000)
DestinationPort: 53

Length: 46
Checksum: To calculate

DNS (length: 38)

Identifier: (614)
QR: 0

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 0
NSCount: 0
ARCount: 0

Question Entry (length: 26)
Name: TN1Bis DNS

Type: 28 [AAAA]
Class: 1

• IPv6/UDP/DNS Response (length: 136 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 94
NextHeader: 17
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 94)

SourcePort: (1000)
DestinationPort: 53

Length: 94
Checksum: To calculate

DNS (length: 86)

203

Identifier: (615)
QR: 1

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 1
NSCount: 0
ARCount: 0

DNS Question Entry (length: 26)
Name: TN1Bis DNS

Type: 28 [AAAA]
Class: 1

DNS Answer (length: 48)
Name: TN1Bis DNS

Type: 28 [AAAA]
Class: 1
TTL: (0)

Length: 16
Address: TN2 IPv6 Global NAT-PT Address

• IPv4/UDP/DNS Query (length: 66 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 66

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

 Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TN2 IPv4 Address
DestinationAddress: TN1 IPv4 Address given by NAT-PT Box

UDP (length: 46)

SourcePort: (1000)
DestinationPort: 53

Length: 46
Checksum: To Calculate

DNS (length: 38)

Identifier: (614)
QR: 0

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 0
NSCount: 0

204

ARCount: 0

DNS Question Entry (length: 26)
Name: TN1Bis DNS

Type: 1 [A]
Class: 1

• IPv4/UDP/DNS Response (length: 125 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 125

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: [one less than in the IPv6/UDP/DNS Response Packet]

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TN1 IPv4 Address given by NAT-PT Box
DestinationAddress: TN2 IPv4 Address

UDP (length: 105)

SourcePort: (1000)
DestinationPort: 53

Length: 105
Checksum: To Calculate

DNS (length: 97)

Identifier: (615)
QR: 1

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 2
ANCount: 1
NSCount: 0
ARCount: 0

Question Entry (length: 26)
Name: TN1Bis DNS

Type: 1 [A]
Class: 1

Question Entry (length: 26)
Name: TN1Bis DNS

Type: 28 [AAAA]
Class: 1

Answer (length: 33)
Name: TN1Bis DNS

Type: 1 [A]
Class: 1
TTL: (0)

Length: 4
Address: TN2 IPv4 Address

205

Procedure:

0. Create a State in the NAT-PT Box for TN1

1. TN2 sends “IPv4/UDP/DNS Query” to TN1 to get IP address of TN1Bis. (Type is A and Name is TN1Bis DNS).

2. TN1 sends “IPv6/UDP/DNS Response” to TN2 to give IPv6 address of TN1Bis.

Observable Results:

• Step 1: The DNS-ALG on the NAT-PT Box Device forwards the A Query to TN1 in an “IPv6/UDP/DNS Query”
Packet.

• Step 2: The DNS-ALG on the NAT-PT Box Device forwards the Answer to TN2 in an “IPv4/UDP/DNS
Response” Packet.

Test Sequence:

Tester Link1 [IPv6] RUT
DNS-ALG

Link2 [IPv4] Tester(IPv6)

TN1 1
IPv4/UDP/DNS Query

<--------------------------- TN2

TN1
IPv6/UDP/DNS Query

<-------------------------- Step1

TN1
IPv6/UDP/DNS Response

--------------------------> 2 TN2

Step2
IPv4/UDP/DNS Response

---------------------------> TN2

206

5.3.9.2 Inverse DNS Query & DNS Response(*)

Purpose:

Check the correct translation of Inverse DNS query and response packet.

References:

• [RFC2766] Pages 9, 10

Resource Requirement:

• Packet generator

• Monitor To capture Packets

• A DNS-ALG MUST be available on the NUT

Test Requirement:

• Create a State in the NAT-PT Box for TN1

Topology:

In this test case, TN1 will be considered as the DNS server from the IPv6 Side.

Discussion:

Since [RFC3596] deprecates references to IP6.INT in [RFC2766] section 4.1, we have to take into account the
use of IP6.ARPA.

If TN2 do a name look-up PTR in order to get DNS Name of TN1bis, a DNS-ALG available on the NUT MUST
replace the string “IN-ADDR.ARPA” with “IP6.ARPA” and the v4 address octet (in reverse order) with the
corresponding v6 address octets in reverse order. The same has to be done for the response.

Packets:

• IPv6/UDP/DNS Inverse Query (length: 101 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 61
NextHeader: 17

HopLimit : (63) [one less than in the IPv4/UDP/DNS Inverse
Query Packet]

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 61)

SourcePort: (1000)
DestinationPort: 53

Length: 61
Checksum: To calculate

DNS (length: 53)

Identifier: (616)
QR: 0

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1

207

ANCount: 0
NSCount: 0
ARCount: 0

Question Entry (length: 41)
Name: TN1Bis IPv6 Reverse DNS

Type: 12 [PTR]
Class: 1

• IPv6/UDP/DNS Inverse Response (length: 194 bytes)

IPv6 Header (length: 40)

Version: 6
TrafficClass: (0)
FlowLabel: (0)

PayloadLength: 154
NextHeader: 17
HopLimit : (64)

SourceAddress: TN1 IPv6 Global Address
DestinationAddress: TN2 IPv6 Global NAT-PT Address

UDP (length: 154)

SourcePort: (1000)
DestinationPort: 53

Length: 154
Checksum: To calculate

DNS (length: 146)

Identifier: (617)
QR: 1

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 1
NSCount: 0
ARCount: 0

Question Entry (length: 53)
Name: TN1Bis IPv6 Reverse DNS

Type: 12 [PTR]
Class: 1

DNS Answer (length: 81)
Name: TN1Bis IPv6 Reverse DNS

Type: 12 [PTR]
Class: 1
TTL: (0)

Length: 22
PTRDName: TN1Bis DNS

• IPv4/UDP/DNS Inverse Query (length: 73 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

208

TypeOfService: (0)
TotalLength: 73

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (64)

Protocol: 17
HeaderChecksum: To calculate

 SourceAddress: TN1 IPv4 Address given by NAT-PT Box
DestinationAddress: TN2 IPv4 Address

UDP (length: 53)

SourcePort: (1000)
DestinationPort: 53

Length: 53
Checksum: To Calculate

DNS (length: 45)

Identifier: (616)
QR: 0

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 2
ANCount: 0
NSCount: 0
ARCount: 0

Question Entry (length: 33)
Name: TN1Bis IPv4 Reverse DNS

Type: 12 [PTR]
Class: 1

• IPv4/UDP/DNS Inverse Response (length: 139 bytes)

IPv4 Header (length: 20)

Version: 4
IHL: 5

TypeOfService: (0)
TotalLength: 139

Identifier: 0
Reserved: 0

DF: 1
MF: 0

FragmentOffset: 0
TTL: (63) [one less than in the IPv6/UDP/DNS Inverse

Response Packet]
Protocol: 17

HeaderChecksum: To Calculate
 SourceAddress: TN1 IPv4 Address given by NAT-PT Box

DestinationAddress: TN2 IPv4 Address

UDP (length: 119)

SourcePort: (1000)
DestinationPort: 53

Length: 119

209

Checksum: To Calculate

DNS (length: 111)

Identifier: (617)
QR: 1

Opcode: 0
AA: 0
TC: 0
RD: 0
RA: 0

Reserved: 0
Rcode: 0

QDCount: 1
ANCount: 1
NSCount: 0
ARCount: 0

Question Entry (length: 33)
Name: TN1Bis IPv4 Reverse DNS

Type: 12 [PTR]
Class: 1

DNS Answer (length: 66)
Name: TN1Bis IPv4 Reverse DNS

Type: 12 [PTR]
Class: 1
TTL: (0)

Length: 19
PTRDName: TN1Bis DNS

Procedure:

0. Create a State in the NAT-PT Box for TN1

1. TN2 sends “IPv4/UDP/DNS Reverse Query” to TN2 to get DNS Name of TN1Bis. (Type is PTR and Name is
TN1Bis IPv6 Reverse DNS).

2. TN1 sends “IPv6/UDP/DNS Reverse Response” to TN2 to give DNS Name of TN1Bis.

Observable Results:

• Step 1: The DNS-ALG on the NAT-PT Box Device translates the Query to TN1 in an “IPv6/UDP/DNS Reverse
Query” Packet.

• Step 2: The DNS-ALG on the NAT-PT Box Device forwards the Answer to TN2 in an “IPv4/UDP/DNS Reverse
Response” Packet.

Test Sequence:

Tester Link1 [IPv6] RUT
DNS-ALG

Link2 [IPv4] Tester(IPv6)

TN1 1
IPv4/UDP/DNS Reverse Query

<--------------------------- TN2

TN1
IPv6/UDP/DNS Reverse Query

<-------------------------- Step1

TN1
IPv6/UDP/DNS Reverse Response
--------------------------> 2 TN2

Step2
IPv4/UDP/DNS Reverse Response
---------------------------> TN2

210

6 Annexes

In this annexe we present how to calculate checksums of this test suite. It will be helpful for packets with the key-word
“To Calculate”.

6.1 IPv4 packets Checksum computation

6.1.1 IPv4 Checksum
The IPv4 Internet Header Format and the IPv4 Header Checksum calculation is defined in [RFC791].

The IPv4 Header Format is the following:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Options | Padding |
 +-+

The different fields are explained in [RFC791]. The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words in the header. For purposes of computing the checksum, the value of the checksum
field is zero.

6.1.2 ICMPv4 Checksum
The ICMPv4 Header Format and the ICMPv4 Header Checksum calculation is defined in [RFC792].

The ICMPv4 Header Format is the following:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | |
 | Specific to ICMP Packet type |
The different fields are explained in [RFC792]. The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.for computing the checksum , the checksum field
should be zero. This checksum may be replaced in the future.

6.1.3 UDP Checksum
The UDP Header Format for IPv4 and the UDP Header Checksum calculation is defined in [RFC768].

The UDP Header Format is the following:

 0 7 8 15 16 23 24 31
 +--------+--------+--------+--------+
 | Source | Destination |
 | Port | Port |
 +--------+--------+--------+--------+
 | | |
 | Length | Checksum |
 +--------+--------+--------+--------+
 |
 | data octets ...
 +---------------- ...

211

The different fields are explained in [RFC768].

Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP
header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two
octets.

The pseudo header conceptually prefixed to the UDP header contains the source address, the destination address, the
protocol, and the UDP length. This information gives protection against misrouted datagrams.

This checksum procedure is the same as is used in TCP.

 0 7 8 15 16 23 24 31
 +--------+--------+--------+--------+
 | source address |
 +--------+--------+--------+--------+
 | destination address |
 +--------+--------+--------+--------+
 | zero |protocol| UDP length |
 +--------+--------+--------+--------+
If the computed checksum is zero, it is transmitted as all ones (the equivalent in one's complement arithmetic). An all
zero transmitted checksum value means that the transmitter generated no checksum for debugging or for higher level
protocols that don't care).

6.1.4 TCP Checksum
The TCP Header Format for IPv4 and the TCP Header Checksum calculation is defined in [RFC793].

The TCP Header Format is the following:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+
The different fields are explained in [RFC793].

The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words in the header and
text. If a segment contains an odd number of header and text octets to be checksummed, the last octet is padded on the
right with zeros toform a 16 bit word for checksum purposes. The pad is not transmitted as part of the segment. While
computing the checksum, the checksum field itself is replaced with zeros.

The checksum also covers a 96 bit pseudo header conceptually prefixed to the TCP header. This pseudo header
contains the Source Address, the Destination Address, the Protocol, and TCP length. This gives the TCP protection
against misrouted segments. This information is carried in the Internet Protocol and is transferred across the
TCP/Network interface in the arguments or results of calls by the TCP on the IP.

 +--------+--------+--------+--------+
 | Source Address |
 +--------+--------+--------+--------+
 | Destination Address |
 +--------+--------+--------+--------+
 | zero | PTCL | TCP Length |
 +--------+--------+--------+--------+
The TCP Length is the TCP header length plus the data length in octets (this is not an explicitly transmitted quantity, but
is computed), and it does not count the 12 octets of the pseudo header.

212

6.2 IPv6 packets Checksum computation

6.2.1 Pseudo-header
Any transport or other upper-layer protocol that includes the addresses from the IP header in its checksum computation
must be modified for use over IPv6, to include the 128-bit IPv6 addresses instead of 32-bit IPv4 addresses. In
particular, the following illustration [RFC2460] shows the TCP and UDP "pseudo-header" for IPv6:

 +-+
 | |
 + +
 | |
 + Source Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination Address +
 | |
 + +
 | |
 +-+
 | Upper-Layer Packet Length |
 +-+
 | zero | Next Header |
 +-+
If the IPv6 packet contains a Routing header, the Destination Address used in the pseudo-header is that of the final
destination. At the originating node, that address will be in the last element of the Routing header; at the recipient(s),
that address will be in the Destination Address field of the IPv6 header.

The Next Header value in the pseudo-header identifies the upper-layer protocol (e.g., 6 for TCP, or 17 for UDP). It will
differ from the Next Header value in the IPv6 header if there are extension headers between the IPv6 header and the
upper-layer header.

The Upper-Layer Packet Length in the pseudo-header is the length of the upper-layer header and data (e.g., TCP
header plus TCP data). Some upper-layer protocols carry their own length information (e.g., the Length field in the UDP
header); for such protocols, that is the length used in the pseudo-header. Other protocols (such as TCP) do not carry
their own length information, in which case the length used in the pseudo-header is the Payload Length from the IPv6
header, minus the length of any extension headers present between the IPv6 header and the upper-layer header.

6.2.2 ICMPv6 Checksum
The ICMPv6 Header Format and the ICMPv6 Header Checksum calculation is defined in [RFC2463].

The ICMPv6 Header Format is the following:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | |
 + Message Body +
 | |

The different fields are explained in [RFC768].

The checksum is the 16-bit one's complement of the one's complement sum of the entire ICMPv6 message starting with
the ICMPv6 message type field, prepended with the previous "pseudo-header". The Next Header value used in the
pseudo-header is 58.

6.2.3 UDP and TCP Checksums
The UDP/TCP Header Formats and checksums calculation are identical in IPv4 and IPv6 but IPv6 uses the previous
pseudo-header in its checksum calculation

Unlike IPv4, when UDP packets are originated by an IPv6 node, the UDP checksum is not optional. That is, whenever
originating a UDP packet, an IPv6 node must compute a UDP checksum over the packet and the pseudo-header.

213

7 References

[MILLER]

G. Miller, Email to the ngtrans mailing list on 26 March 1999.

[RFC768]

RFC 768, STD0006, User Datagram Protocol, J. Postel, August 1980, STANDARD

[RFC791]

RFC 791, STD0005, Internet Protocol, J. Postel, Sep-01-1981, STANDARD

[RFC792]

STD0005, RFC 792, Internet Control Message Protoco, lJ. Postel, September1981, STANDARD

[RFC793]

RFC 793, STD0007, Transmission Control Protocol, J. Postel, September 1981, STANDARD

[RFC0959]

RFC 959, STD 0009, File Transfer Protocol, J. Postel, J.K. Reynolds, Oct-01-1985, STD

[RFC1191]

RFC 1191, Path MTU discovery, J.C. Mogul, S.E. Deering, November 1990, DRAFT STANDARD

[RFC1631]

RFC 1631, The IP Network Address Translator (NAT), K. Egevang, P. Francis May, INFORMATIONAL

[RFC1918]

RFC 1918, BCP0005, Address Allocation for Private Internets, Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot,
E. Lear, February 1996, BEST CURRENT PRACTICE

[RFC2428]

RFC 2428, FTP Extensions for IPv6 and NATs, M. Allman, S. Ostermann, C. Metz, September 1998, PROPOSED
STANDARD

[RFC2460]

RFC 2460, "Internet Protocol, Version 6 (IPv6) Specification", Deering, S., and R. Hinden, December 1998, DRAFT
STANDARD

[RFC2461]

RFC 2461, "Neighbor Discovery for IP Version 6 (IPv6)", Narten, T., Nordmark, E. and W. Simpson, December 1998,
DRAFT STANDARD

[RFC2462]

RFC 2462, Thomson, S., and T. Narten, "IPv6 Stateless Address Autoconfiguration", December 1998, DRAFT
STANDARD

[RFC2463]

RFC 2463, "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", Conta,
A., and S. Deering, December 1998, DRAFT STANDARD

[RFC2464]

RFC2464, Transmission of IPv6 Packets over Ethernet Networks, M. Crawford, December 1998, PROPOSED
STANDARD

[RFC2474]

RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, K. Nichols, S. Blake,
F. Baker, D. Black, December 1998, PROPOSED STANDARD

[RFC2710]

RFC2710, Multicast Listener Discovery (MLD) for IPv6, S. Deering, W. Fenner, B. Haberman, October 1999,
PROPOSED STANDARD

[RFC2765]

RFC 2765, Stateless IP/ICMP Translation Algorithm (SIIT), E. Nordmark, February 2000, PROPOSED STANDARD

214

[RFC2766]

RFC 2766, Network Address Translation - Protocol Translation (NAT-PT), G. Tsirtsis, P. Srisuresh, February 2000,
PROPOSED STANDARD

[RFC2874]

RFC 2874, DNS Extensions to Support IPv6 Address Aggregation and Renumbering, M. Crawford, C. Huitema, July
2000, EXPERIMENTAL [pub as:PROPOSED STANDARD]

[RFC2893]

RFC 2893, Transition Mechanisms for IPv6 Hosts and Routers, R. Gilligan, E. Nordmark, August 2000, PROPOSED
STANDARD

[RFC3022]

RFC 3022, Traditional IP Network Address Translator (Traditional NAT), P. Srisuresh, K. Egevang, January 2001,
INFORMATIONAL

[RFC3513]

RFC 3513, Internet Protocol Version 6 (IPv6) Addressing Architecture, R. Hinden, S. Deering, April 2003, PROPOSED
STANDARD

[RFC3596]

RFC 3596, DNS Extensions to Support IP Version 6, S. Thomson, C. Huitema, V. Ksinant, M. Souissi, October 2003,
DRAFT STANDARD

